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Quadratic forms for Feynman–Kac semigroups

Joseph L. Hibey a,∗, Charalambos D. Charalambous b

a Department of Electrical Engineering, University of Colorado at Denver, Campus Box 110, Denver, CO 80217, USA
b Electrical and Computer Engineering Department, University of Cyprus, 75 Kallipoleos Avenue, Nicosia, Cyprus

Received 21 September 2005; received in revised form 13 December 2005; accepted 20 December 2005

Available online 23 January 2006

Communicated by C.R. Doering

Abstract

Some problems in a stochastic setting often involve the need to evaluate the Feynman–Kac formula that follows from models described in terms
of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish
the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied
in terms of the quadratic form associated with the Feynman–Kac semigroup. The probability measures that naturally arise in this approach,
and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original
stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while
Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some
classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations
and, therefore, the techniques discussed provide a variational approach for finding these solutions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Feynman–Kac (FK) formula is familiar to most who
have worked in the area of stochastic processes. Some applica-
tions of expressions related to this formula that have been used
in detection, estimation and control theory include references
[1–10]. A good reference that exploits the semigroup interpre-
tation of this formula and whose first two chapters we often
refer to is the text by Sznitman [11]. We shall also refer to the
texts by Karatzas and Shreve [12], Durrett [13], Oksendal [14],
Treves [15], Reed and Simon [16,17], and Freidlin and Wentzell
[18] that provide excellent background material and problems
for the topics we address here. In addition, some fairly recent
papers related to FK semigroups that we have found very in-
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teresting and insightful are Kolokoltsov [19], Fitzsimmons and
Kuwae [20], and Van Casteren [21].

The main contribution of this Letter is as follows. Although
the random time change transformation to be presented is well
known, we wish to emphasize its relation to the FK formula,
its subsequent role in formulating boundary value problems de-
scribed by partial differential equations (PDEs), and its use in
models described by stochastic differential equations (SDEs);
the well-known Girsanov measure transformation is also of im-
portance in this regard. Using the existing theory of quadratic
forms, we then present applications to problems whose solu-
tions can be represented in terms of solving a variational prob-
lem. The overall approach, therefore, will be seen to unify opti-
mization methodologies for some seemingly diverse problems
and thereby will lead to tractable solutions.

The Letter is organized as follows. In Section 2, we be-
gin with a two part mathematical formulation of the problem.
Thus, in Section 2.1 we specify a probability space on which
we define our model as a stochastic differential equation. We
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then specify the product probability measure that is used to
define the FK formula and give the standard setup of how it
relates to Brownian motion being killed as it exits a set at a
particular rate. As we shall see, this can be interpreted as a
random time change of the original SDE. Continuing in Sec-
tion 2.2, we use the semigroup interpretation of the FK for-
mula and introduce the quadratic form associated with it. Here,
as in Sznitman [11] and Treves [15], we use these forms to
express the solutions of PDEs of the Cauchy, Dirichlet and
Schrödinger type as solutions to variational problems. Follow-
ing this, we discuss specific applications in Section 3, where the
first deals with the Cameron–Martin–Girsanov measure trans-
formation, the second with Doob’s h-transform, and the third
relates Doob’s h-transform to the theory of large deviations. Fi-
nally, we conclude in Section 4.

2. Mathematical formulation

2.1. Feynman–Kac formulas

We assume a probability space (Ω,F ,P) with a filtration
{Ft�0} ⊆ F , satisfying the usual conditions, that is generated
by a stochastic process xt ∈ Rd that evolves according to the
SDE

(2.1)dxt = b(xt ) dt + σ(xt ) dwt , x0.

Here, b(·) and σ(·) are Lipshitz continuous functions satisfying
linear growth conditions that guarantee unique solutions, and
wt is a d-dimensional Brownian motion with transition density

(2.2)p(u,x, y) = (2πu)−d/2 exp

{−(y − x)2

2u

}
, u > 0.

We continue with the notation in Sznitman [11]. With f ∈
C0(R

d), the space of continuous functions tending to zero at
infinity, and V a bounded continuous function on Rd , the FK
semigroup is given by

RV
t f (x) := Ex

[
f (wt ) exp

{
−

t∫
0

V (ws) ds

}]
, t > 0.

This, however, can be generalized by constraining wt to remain
in some open subset U of Rd , whereby one gets

(2.3)

R
U,V
t f (x) := Ex

[
f (wt ) exp

{
−

t∫
0

V (ws) ds

}
, TU > t

]
,

where TU , the exit time of Brownian motion from U , is defined
as TU := inf{t � 0,wt /∈ U}.

As explained in Sznitman [11], such a generalization can
present difficulties because of irregularity conditions on U (e.g.,
a lack of closure of R

U,V
t when f ∈ C0(U)), smoothness as-

sumptions on V , and so on. Therefore, the space C0(R
d) is

abandoned and replaced by Lp(U,dx), 1 � p < ∞, and the

Kato space Kd and its localized version K loc
d are defined as

Kd :=
{

f measurable: lim
r↓0

sup
x

Ex

Hr∫
0

|f |(ws) ds = 0

}
,

(2.4)

K loc
d :=

{
f measurable:

∀N � 1 lim
r↓0

sup
|x|�N

Ex

Hr∫
0

|f |(ws) ds = 0

}
,

where Hr := inf{s � 0, |ws − w0| � r}. As a result, if the
function V (·), the so-called potential, is such that V− :=
max(−V,0) ∈ Kd and V+ := max(V ,0) ∈ K loc

d , f ∈ Lp(U,

dx) is bounded and measurable, and U is a nonempty open
subset of Rd , then R

U,V
t in (2.3) defines a strongly continuous

semigroup on Lp(U,dx), 1 � p < ∞, and, using the Brownian
bridge measure, can be shown to satisfy

R
U,V
t f (x)

= Ex

[
f (wt )E

t
x,wt

[
exp

{
−

t∫
0

V (ws) ds

}
, TU > t

]]

(2.5)=
∫

f (y)rU,V (t, x, y) dy, t > 0, x, y ∈ Rd,

where its kernel rU,V is given by

rU,V (t, x, y)

(2.6):= p(t, x, y)Et
x,y

[
exp

{
−

t∫
0

V (ws) ds, TU > t

}]
.

Also, this semigroup is self-adjoint for p = 2 and, when
V � 0, it is a contraction semigroup on L2(U,dx). These and
other properties are stated and proved in Section 1.3 of Sznit-
man [11].

We now turn our attention to the product probability measure
used to define the FK semigroup associated with Brownian mo-
tion being killed at a nonnegative rate V ∈ K loc

d while exiting a
nonempty connected open subset U ⊂ Rd . Toward this end, one
defines a ‘cemetery state’ Δ and a canonical Brownian motion
wt such that there exists a random time τ , whereby wt ∈ U for
t ∈ [0, τ ) and wt = Δ for t � τ . Accordingly, the ‘death time’
is then defined as ζ := inf{s � 0,ws = Δ}. With the product
space C(R+,Rd) × R+, the product measure P̂ is defined as
P̂z := Pz ⊗ e−ξ dξ , that is, the components of the product space
are independent and are distributed, respectively, as Brownian
motion starting from z and as an exponential random variable ξ

with parameter 1. From here Sznitman [11] expresses the ‘death
time’ as

(2.7)τ(w, ξ) = TU(w) ∧ inf

{
s � 0,

s∫
0

V (wu)du � ξ

}
,

the process

(2.8)Yt (w, ξ) =
{

wt, 0 � t � τ(w, ξ),

Δ, t � τ(w, ξ),



Download English Version:

https://daneshyari.com/en/article/1865472

Download Persian Version:

https://daneshyari.com/article/1865472

Daneshyari.com

https://daneshyari.com/en/article/1865472
https://daneshyari.com/article/1865472
https://daneshyari.com

