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Abstract

A central problem for compressible two-pressure two-phase flow models is closure, or the proper definition of averages of nonlinear terms. We
propose here new closures for the velocity and momentum equations and discuss their validation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Summary of results

Multiphase flow has been studied for many decades [6,17,
19]. We discuss here compressible two-pressure two-phase flow
models of the type proposed by Stewart and Wendroff [18],
Ransom and Hicks [14], Chen et al. [3,11], and Saltz et al. [15].
The models governing the evolution of the fluid mixing are ob-
tained by applying an appropriate averaging procedure to the
microphysical equations [6]. They have distinct phase pressures
and lead to hyperbolic models, eliminating mathematical diffi-
culties of complex characteristics associated with single pres-
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sure flow models. The derivation of averaged equations leads to
undefined averages of nonlinear functions of the primitive vari-
ables. These quantities must be modeled to close the system of
equations.

The main result, achieved in part here, is to identify a closure
which satisfies all the conservation and boundary constraints
for the continuity and momentum equations, and which is vali-
dated against experimental or numerical data. In a second paper,
we will close the energy equation and satisfy all constraints for
this equation as well. To the authors’ knowledge, previous two
pressure closures did not achieve this goal. Based on the ex-
act expressions for the interfacial terms, integral identities are
proposed to define closures. The model proposed here is a mod-
ification of [2,3,5,11,15]; it is based on an assumed absence of
internal length scales within the mixing zone; it assumes a mix-
ing zone homogeneity.

The applicability of the model includes acceleration driven
mixing processes. Acceleration driven mixing (e.g., Rayleigh–
Taylor, Richtmyer–Meshkov instabilities) is characterized by
well defined coherent structures which occupy the outer por-
tions of the mixing layer. These are the bubbles of light fluid
and the spikes of heavy fluid each penetrating into the opposite
fluid type. The central portion of the mixing layer is typically
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broken up into smaller structures. The phenomenology usually
associated with multiphase flow, i.e., added mass and drag, is
here taken from an assumed motion of the mixing zone edges,
which are themselves governed by buoyancy drag equations,
see [10–12]. With this as phenomenological input, we derive,
in an essentially unique and exact manner, equations which
govern the statistical averages of the coherent structures dom-
inating the mixing zone edges. Beyond the input of velocities
or trajectories of the edges of the mixing zone, this the model
has no adjustable parameters. Implicit in this closure are the
buoyancy, drag and added mass effects normally treated phe-
nomenologically [2,6,9,13]. Form drag as a phenomenological
term in the interior of the mixing zone is here replaced by p∗
and �p = p1 −p2 contributions to the pair of momentum equa-
tions. Indeed, Drew [6] speculated that a model with �p �= 0
should not include drag explicitly. Our results can be viewed as
confirmation of his speculations.

1.2. The primitive equations

Let the function Xk be the phase indicator for material k

(k = 1,2); i.e., Xk(t,x) equals 1 if position x is in fluid k at
time t , zero otherwise. We average the advection law

(1.1)
∂Xk

∂t
+ vint · ∇Xk = 0,

for the indicator function Xk of the region occupied by the
fluid k. It was shown [6] that Xk satisfies (1.1). Here vint is
the microphysical velocity evaluated at the interface (the veloc-
ity component normal to the boundary ∂Xk is continuous so
that vint∇̇Xk is well defined). We also average the microscopic
continuity and momentum equations

(1.2)
∂ρ

∂t
+ ∇ · ρv = 0,

(1.3)
∂ρv
∂t

+ ∇ · ρvv = −∇p + ρg,

and one form of the energy equations

(1.4a)
∂ρE

∂t
+ ∇ · ρvE = −∇ · pv + ρvg,

(1.4b)
∂ρe

∂t
+ ∇ · ρve = −p∇ · v,

(1.4c)
∂ρS

∂t
+ ∇ · ρvS = 0.

Here the dependent variables v, ρ, p, e, E, and S denote, re-
spectively, the velocity, density, pressure, internal energy, total
energy, and entropy, with E = e + v2/2. These variables satisfy
the thermodynamic relation

(1.5)T dS = de + p d

(
1

ρ

)

for smooth flows, where T is the temperature.

1.3. The averaged equations

The two-phase flow model presented here is a stochastic
description of chaotic interpenetration of two inviscid non-heat-
conducting fluids. It applies to flow regimes characterized by

large scale coherent mixing structures (bubbles of light fluid,
etc.), on the order of the thickness of the mixing zone, and by
short time scales, so that relaxation terms are omitted. An en-
semble average is applied to the micro equations (1.2)–(1.4c) to
derive macro equations.

The notation used is as follows. The ensemble average is
denoted 〈·〉. To simplify the analysis, we consider a problem
for which the ensemble has planar symmetry, so that the aver-
aged equations are functions of a single variable, z. The average
〈Xk〉 of the indicator function Xk is denoted βk ; βk(z, t) is then
the expected fraction of the horizontal layer at height z that is
occupied by fluid k at time t . The quantities ρk and pk are, re-
spectively, phase averages of the density ρ and pressure p:

(1.6)ρk = 〈Xkρ〉
〈Xk〉 , pk = 〈Xkp〉

〈Xk〉 .

The quantities vk , ek , Ek and Sk are, respectively, phase mass-
weighted averages of the fluid z-velocity vz, specific internal
energy e, total energy E and entropy S:

vk = 〈Xkρvz〉
〈Xkρ〉 , ek = 〈Xkρe〉

〈Xkρ〉 ,

(1.7)Ek = 〈XkρE〉
〈Xkρ〉 , Sk = 〈XkρS〉

〈Xkρ〉 .

Applying the ensemble average to Eqs. (1.1)–(1.4c), we ob-
tain the one-dimensional two-pressure two-phase flow averaged
equations. We follow [2,3,6,16] to obtain

(1.8)
∂βk

∂t
+ 〈v · ∇Xk〉 = 0,

(1.9)
∂(βkρk)

∂t
+ ∂(βkρkvk)

∂z
= 0,

∂(βkρkvk)

∂t
+ ∂(βkρkvkvk)

∂z
+ ∂(βkpk)

∂z

(1.10)=
〈
p

∂Xk

∂z

〉
+ βkρkg,

for the advection of the volume fraction and for conservation
of mass and momentum. We also have one and only one of the
energy equations

∂(βkρkEk)

∂t
+ ∂(βkρkvkEk)

∂z
+ ∂(βkpkvk)

∂z

(1.11a)= 〈pv · ∇Xk〉 + βkρkvkg,

∂(βkρkek)

∂t
+ ∂(βkρkvkek)

∂z
+ pk

∂(βkvk)

∂z

(1.11b)= 〈pv · ∇Xk〉,
(1.11c)

∂(βkρkSk)

∂t
+ ∂(βkρkvkSk)

∂z
= 0,

for the volume fraction βk , velocity vk , density ρk , pressure pk ,
entropy Sk , internal energy ek and total energy Ek of phase k.
Here g = g(t) > 0 is the gravity.

Three interfacial terms are defined by

(1.12)〈v · ∇Xk〉 = v∗ ∂βk

∂z
,

(1.13)

〈
p

∂Xk

∂z

〉
= p∗ ∂βk

∂z
,
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