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An exact reduced density operator of a quantum system interacting with a bosonic thermal reservoir is
derived by means of the simple algebraic method. The necessary and sufficient condition is found that
the time-convolutionless master equation becomes exact up to the second order with respect to the
system-reservoir interaction. The result is examined by means of the boson-detector model. The reduced
dynamics of a quantum system interacting with a classical reservoir is also discussed.
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1. Introduction

A quantum system placed under the influence of a surrounding
environment, which is referred to as a thermal reservoir, undergoes
an irreversible time-evolution from an initial state to a thermal
equilibrium state. It is one of the most important problems in
non-equilibrium quantum statistical mechanics to formulate such
an irreversible time-evolution of a quantum system [1–3]. For this
purpose, the various kinds of mathematical methods such as the
stochastic method [1], the path-integral method [4–6] and the
projection-operator method [3,7,8], have been developed. Except
for the several models, however, it is very difficult to derive an
exact result for a reduced dynamics of an open quantum system.
When the interaction between the relevant system and thermal
reservoir is linear with respect to bosonic annihilation and creation
operators and the reservoir consists of independent harmonic os-
cillators in the thermal equilibrium state, the exact time-evolution
generator of the relevant system have been obtained both in the
adiabatic coupling case [9–11] and in the non-adiabatic coupling
case [12–14]. Essentially the same result was obtained in the path
integral form [5] and was used to discuss the quantum Brown-
ian motion [6]. In the adiabatic coupling case, the condition has
been found that the time-convolutionless (TCL) quantum master
equation [7,8] of the second-order perturbation with respect to
the system-reservoir interaction becomes exact [11]. In the non-
adiabatic coupling case, it has explicitly been checked [13] up to
the fourth-order with respect to the system-reservoir interaction
that the reduced density operator satisfies the TCL master equation
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derived by means of the projection operator method [8]. In other
words, the exact time-evolution generator in the non-adiabatic
case yields the TCL quantum master equation with the higher or-
der terms. This is not in accordance with the assertion [14] that
the TCL master equation of the second-order perturbation is ex-
act. In this Letter, therefore, we will investigate the condition that
the second-order TCL master equation becomes exact in both the
adiabatic and non-adiabatic cases. This is the generalization of the
results obtained in Ref. [11].

This Letter is organized as follow. In Section 2, using the simple
algebraic method, we derive the exact reduced density operator of
an open quantum system, though the result is the same as that
obtained by means of the field-theoretical method [12,13] and the
path-integral method [14]. As noted above, an equivalent path in-
tegral form of the solution was found in Ref. [5]. In Section 3, we
obtain the necessary and sufficient condition for the second-order
TCL master equation to be exact. In Section 4, we investigate the
reduced dynamics for a propagating particle of the boson-detector
model. We provide the concluding remarks in Section 5. In Ap-
pendix A, we briefly discuss the reduced dynamics when the ther-
mal reservoir is classical.

2. Reduced dynamics of an open quantum system

We consider a reduced dynamics of a quantum system in con-
tact with a thermal reservoir which is a large environmental sys-
tem in thermal equilibrium. We denote Hamiltonians of the rele-
vant quantum system and thermal reservoir as Ĥ S and Ĥ R . In our
treatment, we do not need to specify the system Hamiltonian Ĥ S .
The thermal reservoir is assumed to be a set of independent har-
monic oscillators in the thermal equilibrium state and thus Ĥ R is
given by Ĥ R = ∑

k h̄ωkâ†
kâk , where ωk is the frequency and âk and
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â†
k are bosonic annihilation and creation operators of the kth reser-

voir oscillator. We further assume that the interaction Hamiltonian
ĤSR between the relevant system and thermal reservoir is ĤSR =
h̄ Ŝ X̂ , where Ŝ stands for a Hermitian operator of the relevant sys-
tem and the reservoir operator X̂ is given by X̂ = ∑

k(gkâk + g∗
k â†

k).

In the interaction picture, we have ĤSR(t) = h̄ Ŝ(t) X̂(t) with Ŝ(t) =
e(it/h̄)Ĥ S Ŝe−(it/h̄)Ĥ S and X̂(t) = ∑

k(gke−iωkt âk + g∗
k eiωkt â†

k). It is im-

portant to note that Ŝ(t) and X̂(t′) are commutable for any t and
t′ , namely, [ Ŝ(t), X̂(t′)] = 0.

A density operator Ŵ (t) of the total system in the interaction
picture is subject to the Liouville–von Neumann equation,

∂

∂t
Ŵ (t) = −i

[
Ŝ(t) X̂(t), Ŵ (t)

]
. (1)

For our purpose, it is convenient to introduce superoperator M̌ cor-
responding to an operator M̂ by the relation M̌• = • M̂ . It is easy
to check that [M̂, Ň] = [M̌, N̂] = 0 for any M̂ and N̂ . Furthermore
the relations TrĽM̌ N̂ = TrM̂ L̂N̂ and (MN)ˇ = Ň M̌ are also fulfilled.
Then we can express the Liouville–von Neumann equation in terms
of the superoperators,

∂

∂t
Ŵ (t) = −i

[
Ŝ(t) X̂(t) − Š(t) X̌(t)

]
Ŵ (t), (2)

the formal solution of which is given by

Ŵ (t) = T exp

(
−i

t∫
0

dt′ [ Ŝ
(
t′) X̂

(
t′) − Š

(
t′) X̌

(
t′)])Ŵ (0), (3)

where T stands for the time-ordering operation such that superop-
erators Ŝ(t), Š(t), X̂(t) and X̌(t) are placed from the right to the
left in the chronological order. The initial density operator of the
total system is

Ŵ (0) = ρ̂S(0) ⊗ ρ̂R , (4)

where ρ̂S (0) is an arbitrary density operator of the relevant system
and ρ̂R is the thermal equilibrium state of the reservoir, that is,

ρ̂R = e−Ĥ R/kB T /TrR e−Ĥ R/kB T . Here TrR is the trace operation over
the reservoir Hilbert space and T is an absolute temperature of the
thermal reservoir.

To proceed further, we note that since [ Ŝ(t), X̂(t′)] = 0 and
[ Š(t), X̌(t′)] = 0 are always satisfied for any t and t′ , the time-
ordering operation can be decomposed into TS TR [12], where TS

(TR ) stands for the time-ordering operations for Ŝ(t)’s and Š(t)’s
( X̂(t)’s and X̌(t)’s). Then the density operator Ŵ (t) can be written
in the following form:

Ŵ (t) = TS

[
TR exp

(
−i

t∫
0

dt′ Ŝ
(
t′) X̂

(
t′))

× TR exp

(
i

t∫
0

dt′ Š
(
t′) X̌

(
t′))]

Ŵ (0). (5)

To obtain the time-evolution of the total system, we first calculate
the unitary superoperator,

Û (t) = TR exp

(
−i

t∫
0

dt′ Ŝ
(
t′) X̂

(
t′)). (6)

Since the operator Û (t) always appears under the time-ordering
operation TS of the relevant system, we can teat the operator Ŝ(t)
as a c-number when we calculate the unitary operator Û (t).

Differentiating the unitary operator Û (t) with respect to time t ,
we obtain

∂

∂t
Û (t) = −i Ŝ(t)

[
Â(t) + Â†(t)

]
Û (t), (7)

where Â(t) is the positive frequency part of X̂(t), that is, Â(t) =∑
k gke−iωktâk . We can easily obtain the commutation relations,[

Ŝ(t) Â(t), Ŝ
(
t′) Â

(
t′)] = 0,[

Ŝ(t) Â(t), Ŝ
(
t′) Â†(t′)] = Ŝ

(
t, t′), (8)[

Š(t) Ǎ(t), Š
(
t′) Ǎ(t′)

] = 0,[
Š(t) Ǎ(t), Š

(
t′) Ǎ†(t′)] = − Š

(
t, t′), (9)

with

Ŝ
(
t, t′) = Ŝ(t) Ŝ

(
t′)∑

k

|gk|2e−iωk(t−t′),

Š
(
t, t′) = Š(t) Š

(
t′)∑

k

|gk|2e−iωk(t−t′). (10)

Introducing the operator Û ′(t) by

Û (t) = exp

[
−i

t∫
0

dt′ Ŝ
(
t′) Â

(
t′)]Û ′(t), (11)

and using the commutation relations given by Eq. (8), we can de-
rive

∂

∂t
Û ′(t) =

[
−i Ŝ(t) Â†(t) +

t∫
0

dt′ Ŝ
(
t′, t

)]
Û ′(t). (12)

Solving this equation, we obtain

Û (t) = exp

( t∫
0

dt′
t′∫

0

dt′′ Ŝ
(
t′′, t′)) exp

(
−i

t∫
0

dt′ Ŝ
(
t′) Â

(
t′))

× exp

(
−i

t∫
0

dt′ Ŝ
(
t′) Â†(t′)). (13)

Combining the second and third exponentials, we find the ex-
pression of the unitary operator Û (t) without the time-ordering
operation TR ,

Û (t) = exp

(
−1

2

t∫
0

dt′
t′∫

0

dt′′ [ Ŝ
(
t′, t′′) − Ŝ

(
t′′, t′)])

× exp

(
−i

t∫
0

dt′ Ŝ
(
t′) X̂

(
t′)). (14)

For the unitary operator obtained by replacing Ŝ(t) and X̂(t) with
Š(t) and − X̌(t) in Eq. (6), using the commutation relations given
by Eq. (9), we can derive the similar result. Thus the density oper-
ator Ŵ (t) of the total system becomes

Ŵ (t) = TS

[
Û S(t)exp

(
−i

t∫
0

dt′ Ŝ
(
t′) X̂

(
t′))

× exp

(
i

t∫
0

dt′ Š
(
t′) X̌

(
t′))]

Ŵ (0), (15)
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