ELSEVIER

Available online at www.sciencedirect.com

sc.ENce@p.“w

Physics Letters A 353 (2006) 332-336

PHYSICS LETTERS A

www.elsevier.com/locate/pla

Note on critical cage size for ionization of confined two-electron systems

C. Diaz-Garcia, S.A. Cruz *

Departamento de Fisica, Universidad Autonoma Metropolitana—Iztapalapa, Apartado Postal 55-534, 09340 México, D.F., Mexico
Received 10 June 2005; received in revised form 13 December 2005; accepted 20 December 2005

Available online 6 January 2006

Communicated by A.R. Bishop

Abstract

The use of independent confinement models for the neutral and ionized two-electron atom or molecule to obtain the critical cage size for
ionization is shown to be formally inconsistent. Instead, a treatment using the same Hamiltonian for the evolution of the ground state energy of the
system is proposed, which allows for a consistent estimate of the first and second ionization energies as a function of cage size. Our calculations
are based on the variational method applied to the helium atom confined by a spherical cage with impenetrable and penetrable confining walls.
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1. Introduction

The “atom in a box” model to study confinement effects on
the ground-state energy of helium has been widely explored
in the past considering either hard or soft spherical confine-
ment walls [1-14]. Among this class of studies, the critical cage
radius at which a confined many-electron atom undergoes ion-
ization has been addressed by using Dirichlet-boundary adapted
approaches such as numerical Hartree—Fock calculations [3,8]
and density-functional theory [10], whereby the ionization ra-
dius is selfconsistently obtained.

More recently, for a helium atom confined by spherical rigid
walls, a different approach to estimate the critical cage radius
leading to first ionization, i.e. the transition He — He™, has
been proposed [14]. This critical cage radius has been estimated
by treating separately the He and the Het systems under the
same confinement conditions. The ionization radius is then de-
fined as that where the He and He™ energies attain the same
value, i.e. where the corresponding cage-size dependent energy
curves cross (here we shall call this as the superposition ap-
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proach). We note here that the same scheme had been applied
before in the search of the ionization pressure for the hydro-
gen molecule leading to the transition Hy — H;“ using spher-
oidal impenetrable walls [15,16]. From our point of view this
approach is formally inconsistent, since it deals with two inde-
pendent systems not governed by the same Hamiltonian. To wit,
while the neutral two-electron system is further confined until a
cage size is found to produce an unbound electron (ionization),
the system is still governed by the same Hamiltonian i.e. two
electrons and nucleus (or nuclei in the case of Hy) provided no
electron escapes from the confinement region.

The aim of this communication is to show that critical cage
sizes for ionization should be consistently treated through the
same Hamiltonian. Moreover, an heuristic argument is given to
account for the cage-size evolution of the first and second ion-
ization energies through a suitable partition of the Hamiltonian.
An extension of these ideas is done for the case of confinement
by penetrable spherical walls. Atomic units (e =4 =m =ag =
1) are used throughout unless otherwise indicated.

Let us first digress briefly on the concept of ionization for a
free atom and then bring this idea within the context of a con-
fined atom. A free atom is said to be ionized when one or more
of its bound electrons acquire enough energy to jump into the
continuum and hence become no longer bound to their parent


http://www.elsevier.com/locate/pla
mailto:cruz@xanum.uam.mx
http://dx.doi.org/10.1016/j.physleta.2005.12.091

C. Diaz-Garcia, S.A. Cruz / Physics Letters A 353 (2006) 332-336 333

nucleus. The threshold energy to extract one electron from its
ground-state is known as the ionization potential. In the case
of helium, for example, once the outermost electron is ion-
ized (first ionization) we are left with the hydrogen-like He™
ion whose ionization potential (second ionization) is immedi-
ately obtained from the corresponding hydrogen-like ground-
state energy. This may be done so because the first electron has
escaped the system. Accordingly, the first ionization potential
may be known after deducting the second ionization potential
from the total energy.

For the confined atom, however, the idea of ionization is
not at first related to jump into continuum states but to states
of positive energy appearing due to the confining potential. In
this sense an ionized electron—while unbound to its parent
nucleus—still remains within the confinement volume and in-
teracts with the nucleus and the other electrons. For confining
potentials of finite barrier height, a finite number of positive-
energy states (including the ground-state energy, which is of
our concern here) are allowed and the electrons may ultimately
jump into the continuum leaving the system whereas for infi-
nitely high barrier heights the unbound electrons will always
remain trapped. Hence, the concept of ionization potential for
a confined atom may be stated as the threshold energy required
to produce an unbound electron. Clearly, while the electrons
and nucleus remain in the same confinement volume, the same
Hamiltonian governs the system with either ionized and/or
bound electrons.

2. Method

For the sake of the subsequent discussion, let us consider
a two-electron atom in its ground state and nuclear charge Z
confined within a spherical cage of radius R with a confining
barrier height Vp. The corresponding Hamiltonian is given as:

H:_EVI — EVZ + V(ri,r) (D)
with
z Z 1
V(rl,r2)={_ﬁ_5+m (r1,r2 < R), @
Vo) +W(2)  (r1,r2 2 R).

The numerals 1 and 2 in Egs. (1) and (2) refer to each elec-
tron, with r; and r their corresponding radial positions rela-
tive to the origin and rq, the interelectronic distance. Also, in
Eq. (2) we have made the explicit indication of the height of
the potential barrier at the boundary felt by each electron, i.e.
Vo(1) = Vo (2) = Vp.

For an infinitely high confining potential (Vo — 00), we use
the variational ansatz wavefunction proposed by Gimarc [2]:

Y(1,2)=No(,2) f(r1) f(r2), 3)
where @ (1, 2) is the free-system simply correlated function:
D(1,2) =e e b2 4 gmPrigmen 4)

with o and § variational parameters and f (r;) cut-off functions
such that the wavefunction vanishes at the boundary, defined as:

fr)=A=ri/R), i=12, &)

and N a normalizing factor evaluated within the confined re-
gion.

In the case of a finite barrier height Vo—for simplicity of the
treatment—the interior ¥' and exterior ¥¢ are chosen as the
variational ansatz wavefunctions [7]:

wi(1,2) = Ag} (r)¢i () (r1,r2 < R), (6)
w(1,2) = B{ (r1)$,(r2) (r1.r2 = R) (7
where

Pl i) =e M (R —yr), (8)
¢ )y =eMi/ri, (i=1,2) ©)

and A, u and y variational parameters with A, B normalizing
factors such that:

/|llli(1,2)|2d11dr2+/|l1/"(1,2)|2dndr2: 1, (10)
I; e

where I, I', denote the interior and exterior domain of integra-
tion, respectively.

In either case, hard or soft walls, the energy functional as-
sociated to the Hamiltonian given by Egs. (1) and (2) may be
obtained through the relation:

EMmi, ...,k R, Vo)
=<wf(1,2)|ﬁ|wf(1,2))ﬂ+(w€(1,2)|ﬁ|w€(1,2))n an

whose minimization, for a given box radius R and barrier height
Vo renders the variational parameters 7y, ..., k.

Coming back to the case of the helium atom (Z = 2) and
helium-like ions, we shall give now some heuristic arguments
to study the evolution of the first and second ionization potential
by a suitable partition of the total energy [Eq. (11)] which may
be cast as:

E=Ei+ Ey, (12)
with E7 and Ejp given as:

Er =(l1/"(1,2)|H§|lpi(1,2))Fi +(W“(1,2)|H;|lpe(1,2))re

. 1 .
+(W 1,2 — ¥ (1,2),., (13)
ri2 !

EH:(lI/i(l,2)|Hf|lI/i(l,2))Fi +(We W, D)|Hf[WE(1,2) -

(14)
and the following definitions have been made for the one-
electron operators both for the interior and exterior regions:

i _ _ 12 z
Hy =~V &

e (rk <R)
Hg =—=3Vi+Vo(K) (k2R |’

This decomposition allows to identify Ep as the second ion-
ization potential with reference to the free-atom case (Hy =
0, I'; — 00) and by virtue of Eq. (12) the first ionization poten-
tial is then identified as E1. As we shall demonstrate further be-
low, the above scheme allows to treat consistently the ionization
of confined two-electron atoms using the same Hamiltonian.

K=1,2. (15)
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