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The releasing of a Bose-Einstein condensate from a double well potential into a harmonic trap can induce
interference patterns. We choose a soliton-like splitting barrier for the interference experiment. The
numerical simulations show that dark solitons and sound waves are created directly when the collective
movement of the condensate is weak. In particular, we calculate the energy of each production, and
confirm that the energy of the region caused by the splitting barriers transfers into dark solitons and

sound waves. Furthermore, based on the setup, we firstly indicate how much energy is transferred into
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1. Introduction

Since the experimental realization of a dilute atomic Bose-
Einstein condensate (BEC) [1], the nonlinear properties of the mat-
ter waves have attracted extensive attention. One of the great in-
terests is the creation of dark solitons [2-11]. Towards that goal,
various methods have been developed, such as the phase imprint-
ing [2,3] and the density engineering [6-9]. It is found that dark
soliton, accompanied by a phase jump, results from a balance be-
tween the defocusing dispersion and the focusing repulsive non-
linear interaction. Recently, Weller et al. [12] have investigated the
generation, subsequent oscillation and interaction of a pair of dark
solitons by merging two coherent BECs initially prepared in a dou-
ble well potential. The formation of solitons has been regarded as
a consequence of interference [13-16]. Based on a dispersive hy-
drodynamic perspective, Hoefer et al. [17] have shown that the
interference pattern between two BECs of sufficiently large den-
sity can be interpreted as a modulated soliton train. These works
may lead to some confusion about the generation of interference
fringes and the creation of dark solitons. As is well known, interfer-
ence usually leads to the cosine-squared fringes, which differ from
dark solitons [13-16]. Now one may want to know what causes
the interference to create dark solitons or to produce fringes. Fur-
thermore, many studies have mentioned the soliton energy, which
can be computed theoretically [18-22]. However, few investiga-
tions have discussed where the soliton energy comes from. This
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problem is often neglected as the main attention is focused on the
methods for generating the soliton as well as the stability of the
soliton. For this, one may need to find out how much energy is
transferred into the system as the method for creating solitons is
applied. In addition, an experiment often not only produces dark
solitons but also causes other things such as sound waves and the
intense collective oscillation [2-11]. Hence, not all the energy is
transferred into dark solitons. What is important here is whether
the method is efficient for producing solitons.

In this study, by choosing a soliton-like splitting barrier, we
have the usual matter-wave interference setup degenerate into a
dark soliton generation. Such a design enables us to connect inter-
ference fringes with dark solitons and keep the whole condensate
relatively static. Hence, it provides the possibility for us to exam-
ine the production exactly, and illustrate the resulting transfer of
energy into each production. The numerical simulations show that
the experiment can produce dark solitons and sound waves. Mean-
while, we illuminate the experiment by examining the energy of
each production. It shows that the energy of the region, caused
by the splitting barriers, changes into soliton energy and sound
wave energy. Furthermore, our study firstly shows how much en-
ergy is transferred into the system as solitons are created and how
much energy is apportioned into dark solitons. Also, the difference
between our experiment and the usual interference of BEC in a
harmonic trapped potential will be shown.

2. Basic equations and initial conditions for the experiments
Under strong transverse confinement, the BEC in the mean-field

limit can be described by the one-dimensional Gross-Pitaevskii
(GP) equation:
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Here, ¥ (x, t) denotes the macroscopic order parameter of the sys-
tem, Vext(X) the confining potential, m the atomic mass, and g =
471h2a0/m the scattering amplitude, where aq is the s-wave scat-
tering length.

We consider that the interference setup is made up of a com-
bination of a harmonic trap and a middle barrier:

252

Vext(X) = Vharmonic(X) + Vbarrier (X) = + Vbarrier(®).  (2)

We suppose some interference that does not obviously excite
the deformation of the main profile of the whole BEC or cause
collision between BECs. Thus, the competition between repulsive
interactions and the external confining potential will make the
whole BEC relatively static. Even the interference will not break
the main profile of the whole BEC. Can we obtain the interference?
Generally speaking, the width of the barrier should be decreased to
some critical value [12,15]. Below the value, the collective move-
ment caused by the confining potential is feeble. We assume the
middle barrier is:

Vparrier(0) = C[1 — |tanh(ax)|"], (3)

where a, b and C are used to tune the shape of the barrier. The
barrier would only produce a localized defect in the BEC. Espe-
cially, if C =, a=1 and b = 2, the defect has the same shape as
that of a static dark soliton in the Thomas—Fermi (TF) limit.

In numerical simulations, one may apply the density profile ap-
proximated by the TF solution as initial condition. To reduce the
underlying density fluctuation at the edges, we use a smoothed
initial profile:

nx) = max{l — Vbarrier (X)/ 14, O} Mo (X), (4)

where p is the chemical potential of the atom. ng(x) is the density
distribution of the ground state condensate in the harmonic trap,
and it is obtained by propagating the TF wave function in imagi-
nary time.

For the sake of simplicity, we set i = 1, the chemical poten-
tial u =1, the atomic mass m = 1, and the scattering amplitude
g =1. Thus the spatial extent of the system is characterized by
the healing length & =h/,/mu, and the time unit is &/c, where
the Bogoliubov speed of sound ¢ = /u/m. Meanwhile, we have
w= («/5/100)(6/&) for the harmonic potential. Certainly, the bar-
rier must split the BEC, i.e., C > .

We now estimate the parameters for a realistic experiment. For
a 23Na condensate with m = 38.18 x 1027 kg and a = 2.8 nm
[23], we assume the tight transverse confining frequency w; =
5000 x 2w Hz and the one-dimensional peak condensate den-
sity nyp = 108 m~!. Thus, the longitudinal confining frequency is
39.7 x 2w Hz. Our space and time units correspond to 0.4 pm and
5.7 x 107 s respectively. The system has the number of atoms
No ~ 52000.

3. Numerical experiments and results

We apply numerical simulation to show the experiments. We
assume that the initial phase between the two parts of the BECs
can be obtained by the phase-imprinting method. Meanwhile, only
the middle barrier is removed at t = 0. The harmonic well is kept
to trap the BEC. We apply the expression |y (x, t)|> —no(x) to mon-
itoring the relative fluctuation of the BECs. Figs. 1(a)-(d) present
the results with one, two, three and four interference fringes, re-
spectively. The position of the black lines denotes the fringes. The
value of the maximal density fluctuation is 0.05 approximately.

This means our experiments do not cause much deformation on
the main profile of the BECs. Furthermore, the ‘fringes’ come to-
gether and attempt to reform the configuration of the initial defect,
after that a new cycle starts [see Figs. 1(b)-(d)]. This indicates the
‘fringes’ pass through each other and regain their initial structures
as the solitons with small amplitude in [24]. Therefore, the oscil-
lation frequency of the ‘“fringes’ approximates w/+/2, which is the
characteristic value of a dark soliton oscillating in the harmonically
trapped BEC [12,18,19]. All these results indicate that the interfer-
ence setup creates dark solitons and not simply ‘fringes’.

In Figs. 1(b)-(d), the fluctuation which moves more rapidly than
dark solitons is sound waves [2,3]. Generally, some sound waves
are caused when dark solitons are created. Furthermore, there is
another source of sound waves. As the solitons move, they become
asymmetrically deformed and try to adjust to the inhomogeneous
background by radiating counterpropagating sound waves [22].

For clarity, we plot the snapshots of the four cases at t =
150& /c [see Figs. 2(a)-(d)]. For comparison, we also plot the den-
sity profile in the presence of the barrier to each case (see the red
curves). So we can see the solitons easily, i.e. the structure with
density minima. The fluctuation is just the sound waves. In real ex-
periments using phase-imprinting [2,3] or density engineering [6],
dark solitons are often observed in association with sound waves.
Thus, the numerical experiment is in qualitative agreement with
the real one. For the center ‘fringes’ in Figs. 2(a) and (c), we find
that the energy (1.33) is just equal to the value of a dark soliton
with velocity v =0 [20,21]. The detailed calculation will be illu-
minated in the following text. Furthermore, we have checked that
there is phase difference between the two sides of the solitons.

Why do the experiments create dark solitons and sound waves?
It is easy to attribute the results to the nonlinear interference or to
the collision of the two parts condensate. Here, to further explore
the experiment, we consider the energy transformation. In [3],
Denschlag et al. have distinguished dark soliton from sound waves
according to its speed. Specially, Proukakis et al. [18,19] have mon-
itored the change of the soliton energy to show the soliton-sound
interactions. Now, a fundamental question arises naturally: where
do the soliton energy and the sound wave energy come from in
the above experiments? In fact, the remarkable change in our ex-
periments is that the defect region would be broken. Therefore, a
scenario is that the energy of the initial defect region transfers to
dark solitons and sound waves. The next text will prove our as-
sumption.

Let us first concentrate on the energy of dark solitons and
sound waves. In the experiments, the energy of the soliton is cal-
culated by integrating the GP energy function

2 1
W) = 2—|vw|2 + Ve @Y 12 + S glyl?, (5)
m 2

across the soliton region (X 4 5&, where X is the instantaneous
position of the local density minimum) and subtracting the corre-
sponding contribution of the background fluid [18,19,22]. Similarly,
the energy of sound waves can be calculated across the sound
wave region. Figs. 3(a) and (b) plot the temporal evolution of the
energy of dark solitons and that of sound waves, respectively. The
fluctuation of the energy in Figs. 3(a) and (b) shows the sound-
soliton interaction. The more the sound wave energy is, the larger
the fluctuation is. Meanwhile, the soliton energy is much larger
than the sound wave energy in our experiments. Especially for
the case in Fig. 1(a), the sound wave energy approaches zero.
This point also means that the setup is very efficient for creat-
ing solitons. Furthermore, a very interesting property is that the
total energy of sound waves and dark solitons is conserved [see
Fig. 3(c)]. If the configurations are the same (see the two cases of
b =50), the phases do not change the total energy.
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