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In this Letter, we propose a supersymmetric KdV-Sawada-Kotera-Ramani equation. Based on a super-
Riemann theta function, we devise a lucid and straightforward way for explicitly constructing a quasi-
periodic wave solution of the supersymmetric KdV-Sawada-Kotera-Ramani equation. In addition, a one-
soliton solution is obtained as a limiting case of the periodic wave solution under small amplitude.
Indeed different from the purely bosonic case, the quasi-periodic wave observed shows that there is

an “influencing band” among the waves under the presence of the Grassmann variable. The waves are
PACS: symmetric about the band but collapse along with the band. Furthermore, the amplitudes of the waves
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increase as the waves move away from the band.
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1. Introduction
The KdV-Sawada-Kotera-Ramani equation

U +a(3u? + ux) , + b(15u% + 15Uty + Uxxxe) , = 0 (1.1)

was used to theoretically study the resonances of solitons in one-
dimensional space by Hirota. It was found that two solitons near
the resonant state exhibit some new phenomena [1]. The exis-
tence of conservation law for this equation was further proved by
Konno [2]. In fact, Eq. (1.1) is a linear combination of the KdV equa-
tion and the Sawada-Kotera equation, which reduces to the KdV
equation for b =0 and the Sawada-Kotera equation for a = 0, re-
spectively.

It is well known that a number of integrable equations can
be generalized into the supersymmetric analogues [3-10], among
them are the N =1 supersymmetric KdV equation

@, +3D2(PDyP) + DD =0, (12)

and the A =1 supersymmetric Sawada-Kotera-Ramani equation
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@+ D2[10(Dx @)Dy + 5(D;®) P + 15(Dy®)* D |
+ D% =0, (1.3)

where the differential operator Dy = dy + 69y is the super-deriva-
tive, and @ = & (x,t, 6) is fermionic superfield depending on usual
independent variable x, t and Grassmann variable 6. Therefore,
motivated by above discussion, it is natural for us to propose an
N =1 supersymmetric KdV-Sawada-Kotera-Ramani equation

@ +aDE[3(@Dx®P) + Dy @] + bDE[10(Dx®) Dy &
+5(Dy®)® + 15(Dx@)> P + D@ ] =0, (14)

The supersymmetric KdV equation (1.2) was introduced by
Manin, Radul and Mathieu [4,5]. In recent years, much attention
has been given to its bi-Hamiltonian structure, Painlevé prop-
erty, infinite many symmetries, Darboux transformation, Backlund
transformation, bilinear form and multi-soliton solutions [3-6].
Castea, Liu and Manas have found soliton solutions of Eq. (1.2)
by using Hirota method and Darboux transformation, respectively
[3,9]. The supersymmetric Sawada-Kotera-Ramani equation (3.3)
was first proposed by Carstea [3]. The soliton solutions, Lax rep-
resentation and infinite conserved quantities of this equation have
been further obtained recently [11,12]. To the knowledge of the
author, the quasi-periodic solutions of Egs. (1.2)-(1.4), which can
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be considered as a generalization of the soliton solutions, remain
essentially open by either algebro-geometric or bilinear method.

The bilinear derivative method developed by Hirota is a power-
ful approach for constructing exact solution of nonlinear equations
[13-19]. Based on the Riemann theta functions, Nakamura ex-
tended the Hirota’s bilinear method to directly construct a kind of
quasi-periodic solutions of nonlinear equation [20,21], where the
periodic wave solutions of the KdV equation and the Boussinesq
equation were obtained. Further development was made to inves-
tigate the discrete Toda lattice, (2 + 1)-dimensional Kadomtsev-
Petviashvili equation, Bogoyavlenskii's breaking soliton equation
and two other equations in (2 4+ 1) dimensions possessing Hirota
bilinear forms [22-27].

In this Letter, we aim at further extending the Hirota’s bilinear
method to construct quasi-periodic wave solutions of the super-
symmetric KdV-Sawada-Kotera-Ramani equation (1.4). Based on a
super-Riemann theta function, we devise a lucid and straightfor-
ward formula to construct quasi-periodic wave solutions for a class
of supersymmetric equations. Once a nonlinear equation is writ-
ten in bilinear form, then its quasi-periodic wave solutions can be
obtained directly by using the formula. This formula has overcome
repetitive recursion and computation which must be performed for
each equation in previous works [20-27].

The organization of this Letter is as follows. In Section 2, we
briefly introduce a super-Hirota bilinear operator and a super-
Riemann theta function. Especially we devise a key formula for
constructing periodic wave solutions. In Section 3, as application of
our formula, we construct an explicit quasi-periodic wave solution
to Eq. (1.4). We further propose an effective limiting procedure to
analyze asymptotic behavior of the quasi-periodic wave solution.
It is rigorously shown that the known one-soliton solution can be
obtained as limiting cases of the quasi-periodic wave solution un-
der a small amplitude.

2. Super-Hirota operator and Riemann theta functions

In order to apply the Hirota bilinear method for constructing
multi-periodic wave solutions of Eq. (1.4), we consider the follow-
ing variable transformation

@ =2D2In f(x,t,0). (2.1)

Substituting (2.1) into (1.4), we then get the following bilinear form

SxG(Dx, D) f - f = Sx(D¢ +aD3 +bD3 +¢)f - f =0, (2.2)

where c is an integration constant. The Hirota bilinear differential
operators Dy and D; are defined by

DTDIf(x,t,0) - g(x,t,0)
= (3 — )™ (B — )" f(x,t,0)g(X, 1, 0)

The super-Hirota bilinear operator is defined as [3]

X' =x,t'=t"

SNf(x,t,0)-g(x,t,0)

N
= Z(_‘l)]‘f|+%](]+1) |:I;Jj| D,[:I_]f(x, £, O)D,](g(x, t, 9),
j=0

where the super-binomial coefficients are defined by

[N/2]

[N] = <[]/2])’ if (N, j) # (0, 1) mod 2,

J .
0, otherwise.

[k] is the integer part of the real number k ([k] <k <[k]+ 1), and
| f| is the Grassmann parity of the function f defined by

if] _{1, if f is odd,
N 0, if fiseven.

Proposition 1. The Hirota bilinear operators Dy, D; and super-Hirota
bilinear operator Sy have properties [3]

siVf-g=D}f &

DI'DPest - €52 = (g — a2)™ (w1 — wp)"e51 142,

SN Hlef e = [01 — 0g + 0(a1 — o) (@1 — az)VeF1 T2,

where phase variable §j = ajx + wjt + §;, and o, wj, 0, §; are pa-

rameters, j = 1, 2. More generally, we have

F(Dy, Dy)e’t - €52 = F(ay — aa, w1 — wp)es1 752, (2.3)

where F(Dy, D;) is a polynomial about operators Dy and Dy.
In the following, we introduce a super-Riemann theta function and
discuss its quasi-periodicity, which plays a central role in this Letter [28]

H[i](g,o):ﬁ[i](s,meo). (2.4)

The ordinary theta function appearing here is defined by

s [‘z] €. 1)= ) exp{2miE +&)(n+5) —wT(M+5)%},

neZN

where the integer value n € Z, complex s, & € C, and complex phase
variables & € C. The T > 0 is called the period matrix. For the simplicity,
when s = ¢ =0, we denote

H(&,G):H[g] &,7,0).

Definition 1. A function g(t) on C is said to be quasi-periodic in t
with fundamental periods Tq,..., T € C if Tq,..., Ty are linearly
dependent over Z and there exist a function G(y1,..., yx) in CK,
such that

G, ¥Yj+Tj oo, y) =G, oo, Yjo oo
forall (y1,..., yx) € Ck,
G(t,...,t,...,.t) =g(t).

In particular, g(t) becomes periodic with the period T if and only
if T;=m;T.

Vi),

Proposition 2. The super-theta function H (&, 0) has the periodic prop-
erties [28]

H( +1,0)=H(,0),
H(E +iT +i00,0) =e TTH0O2TiE g o), (2.5)

We regard 1 and it + i6o as periods of the theta function H (&, 0) with
multipliers 1 and e~ (T +09) =27 rospectively. Here, 1 is actually period
of the theta function H(€, ), but it + ifo is the period of the function
Dyde INH(E, 6).

Proposition 3. The meromorphic functions f (¢) on C are as follows:

f€) =aDydeInH(E,0), &eCN,
then it holds that
fE+it+ido)=f(), &eC. (2.6)
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