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In this Letter, we propose a supersymmetric KdV–Sawada–Kotera–Ramani equation. Based on a super-
Riemann theta function, we devise a lucid and straightforward way for explicitly constructing a quasi-
periodic wave solution of the supersymmetric KdV–Sawada–Kotera-Ramani equation. In addition, a one-
soliton solution is obtained as a limiting case of the periodic wave solution under small amplitude.
Indeed different from the purely bosonic case, the quasi-periodic wave observed shows that there is
an “influencing band” among the waves under the presence of the Grassmann variable. The waves are
symmetric about the band but collapse along with the band. Furthermore, the amplitudes of the waves
increase as the waves move away from the band.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The KdV–Sawada–Kotera–Ramani equation

ut + a
(
3u2 + uxx

)
x + b

(
15u3 + 15uuxx + uxxxx

)
x = 0 (1.1)

was used to theoretically study the resonances of solitons in one-
dimensional space by Hirota. It was found that two solitons near
the resonant state exhibit some new phenomena [1]. The exis-
tence of conservation law for this equation was further proved by
Konno [2]. In fact, Eq. (1.1) is a linear combination of the KdV equa-
tion and the Sawada–Kotera equation, which reduces to the KdV
equation for b = 0 and the Sawada–Kotera equation for a = 0, re-
spectively.

It is well known that a number of integrable equations can
be generalized into the supersymmetric analogues [3–10], among
them are the N = 1 supersymmetric KdV equation

Φt + 3D2
x (ΦDxΦ) + D6

x Φ = 0, (1.2)

and the N = 1 supersymmetric Sawada–Kotera–Ramani equation
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Φt + D2
x

[
10(DxΦ)D4

x Φ + 5
(

D5
x Φ

)
Φ + 15(DxΦ)2Φ

]
+ D10

x Φ = 0, (1.3)

where the differential operator Dx = ∂θ + θ∂x is the super-deriva-
tive, and Φ = Φ(x, t, θ) is fermionic superfield depending on usual
independent variable x, t and Grassmann variable θ . Therefore,
motivated by above discussion, it is natural for us to propose an
N = 1 supersymmetric KdV–Sawada–Kotera–Ramani equation

Φt + aD2
x

[
3(ΦDxΦ) + D4

x Φ
] + bD2

x

[
10(DxΦ)D4

x Φ

+ 5
(

D5
x Φ

)
Φ + 15(DxΦ)2Φ + D8

x Φ
] = 0, (1.4)

The supersymmetric KdV equation (1.2) was introduced by
Manin, Radul and Mathieu [4,5]. In recent years, much attention
has been given to its bi-Hamiltonian structure, Painlevé prop-
erty, infinite many symmetries, Darboux transformation, Bäcklund
transformation, bilinear form and multi-soliton solutions [3–6].
Castea, Liu and Manas have found soliton solutions of Eq. (1.2)
by using Hirota method and Darboux transformation, respectively
[3,9]. The supersymmetric Sawada–Kotera–Ramani equation (3.3)
was first proposed by Carstea [3]. The soliton solutions, Lax rep-
resentation and infinite conserved quantities of this equation have
been further obtained recently [11,12]. To the knowledge of the
author, the quasi-periodic solutions of Eqs. (1.2)–(1.4), which can
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be considered as a generalization of the soliton solutions, remain
essentially open by either algebro-geometric or bilinear method.

The bilinear derivative method developed by Hirota is a power-
ful approach for constructing exact solution of nonlinear equations
[13–19]. Based on the Riemann theta functions, Nakamura ex-
tended the Hirota’s bilinear method to directly construct a kind of
quasi-periodic solutions of nonlinear equation [20,21], where the
periodic wave solutions of the KdV equation and the Boussinesq
equation were obtained. Further development was made to inves-
tigate the discrete Toda lattice, (2 + 1)-dimensional Kadomtsev–
Petviashvili equation, Bogoyavlenskii’s breaking soliton equation
and two other equations in (2 + 1) dimensions possessing Hirota
bilinear forms [22–27].

In this Letter, we aim at further extending the Hirota’s bilinear
method to construct quasi-periodic wave solutions of the super-
symmetric KdV–Sawada–Kotera–Ramani equation (1.4). Based on a
super-Riemann theta function, we devise a lucid and straightfor-
ward formula to construct quasi-periodic wave solutions for a class
of supersymmetric equations. Once a nonlinear equation is writ-
ten in bilinear form, then its quasi-periodic wave solutions can be
obtained directly by using the formula. This formula has overcome
repetitive recursion and computation which must be performed for
each equation in previous works [20–27].

The organization of this Letter is as follows. In Section 2, we
briefly introduce a super-Hirota bilinear operator and a super-
Riemann theta function. Especially we devise a key formula for
constructing periodic wave solutions. In Section 3, as application of
our formula, we construct an explicit quasi-periodic wave solution
to Eq. (1.4). We further propose an effective limiting procedure to
analyze asymptotic behavior of the quasi-periodic wave solution.
It is rigorously shown that the known one-soliton solution can be
obtained as limiting cases of the quasi-periodic wave solution un-
der a small amplitude.

2. Super-Hirota operator and Riemann theta functions

In order to apply the Hirota bilinear method for constructing
multi-periodic wave solutions of Eq. (1.4), we consider the follow-
ing variable transformation

Φ = 2D3
x ln f (x, t, θ). (2.1)

Substituting (2.1) into (1.4), we then get the following bilinear form

SxG(Dx, Dt) f · f = Sx
(

Dt + aD3
x + bD5

x + c
)

f · f = 0, (2.2)

where c is an integration constant. The Hirota bilinear differential
operators Dx and Dt are defined by

Dm
x Dn

t f (x, t, θ) · g(x, t, θ)

= (∂x − ∂x′)m(∂t − ∂t′)
n f (x, t, θ)g

(
x′, t′, θ

)∣∣
x′=x,t′=t .

The super-Hirota bilinear operator is defined as [3]

S N
x f (x, t, θ) · g(x, t, θ)

=
N∑

j=0

(−1) j| f |+ 1
2 j( j+1)

[
N
j

]
D N− j

x f (x, t, θ)D j
x g(x, t, θ),

where the super-binomial coefficients are defined by

[
N
j

]
=

⎧⎨
⎩

( [N/2]
[ j/2]

)
, if (N, j) �= (0,1) mod 2,

0, otherwise.

[k] is the integer part of the real number k ([k] � k � [k] + 1), and
| f | is the Grassmann parity of the function f defined by

| f | =
{

1, if f is odd,

0, if f is even.

Proposition 1. The Hirota bilinear operators Dx, Dt and super-Hirota
bilinear operator Sx have properties [3]

S2N
x f · g = DN

x f · g,

Dm
x Dn

t eξ1 · eξ2 = (α1 − α2)
m(ω1 − ω2)

neξ1+ξ2 ,

S2N+1
x eξ1 · eξ2 = [

σ1 − σ2 + θ(α1 − α2)
]
(α1 − α2)

N eξ1+ξ2 ,

where phase variable ξ j = α j x + ω jt + δ j , and α j , ω j , σ j , δ j are pa-
rameters, j = 1,2. More generally, we have

F (Dx, Dt)eξ1 · eξ2 = F (α1 − α2,ω1 − ω2)eξ1+ξ2 , (2.3)

where F (Dx, Dt) is a polynomial about operators Dx and Dt .
In the following, we introduce a super-Riemann theta function and

discuss its quasi-periodicity, which plays a central role in this Letter [28]

H

[
ε
s

]
(ξ , θ) = ϑ

[
ε
s

]
(ξ , τ + θσ ). (2.4)

The ordinary theta function appearing here is defined by

ϑ

[
ε
s

]
(ξ , τ ) =

∑
n∈ZN

exp
{

2π i(ξ + ε)(n + s) − πτ(n + s)2},
where the integer value n ∈ Z, complex s, ε ∈ C, and complex phase
variables ξ ∈ C. The τ > 0 is called the period matrix. For the simplicity,
when s = ε = 0, we denote

H(ξ , θ) = H

[
0
0

]
(ξ , τ , θ).

Definition 1. A function g(t) on C is said to be quasi-periodic in t
with fundamental periods T1, . . . , Tk ∈ C if T1, . . . , Tk are linearly
dependent over Z and there exist a function G(y1, . . . , yk) in C

k ,
such that

G(y1, . . . , y j + T j, . . . , yk) = G(y1, . . . , y j, . . . , yk),

for all (y1, . . . , yk) ∈ C
k,

G(t, . . . , t, . . . , t) = g(t).

In particular, g(t) becomes periodic with the period T if and only
if T j = m j T .

Proposition 2. The super-theta function H(ξ, θ) has the periodic prop-
erties [28]

H(ξ + 1, θ) = H(ξ, θ),

H(ξ + iτ + iθσ , θ) = e−π(τ+θσ )−2π iξ H(ξ, θ). (2.5)

We regard 1 and iτ + iθσ as periods of the theta function H(ξ, θ) with
multipliers 1 and e−π(τ+θσ )−2π iξ , respectively. Here, 1 is actually period
of the theta function H(ξ, θ), but iτ + iθσ is the period of the function
Dx∂ξ ln H(ξ, θ).

Proposition 3. The meromorphic functions f (ξ) on C are as follows:

f (ξ) = αDx∂ξ ln H(ξ, θ), ξ ∈ C
N ,

then it holds that

f (ξ + iτ + iθσ ) = f (ξ), ξ ∈ C. (2.6)
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