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in nanofluids

Lei Gao∗, Xiao Feng Zhou

Department of Physics, Suzhou University, Suzhou 215006, China

Received 2 June 2005; received in revised form 4 August 2005; accepted 24 August 2005

Available online 2 September 2005

Communicated by R. Wu

Abstract

By taking into account both physical and geometrical anisotropy of the highly conducting nanoparticle inclusions, we present
differential effective medium theory to estimate the effective thermal conductivity in nanofluids. It is found that the adjustment
of the nanoparticles shape is really helpful to achieve appreciable enhancement of effective thermal conductivity. Moreover,
numerical results are in good agreement with the experimental ones observed in nanofluids. To one’s interest, our theoretical
predictions successfully show a nonlinear dependence of effective thermal conductivity on the volume fractions.
 2005 Elsevier B.V. All rights reserved.
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Nanofluids, in which highly conductive solid nanoparticles with dilute volume fractions are randomly embedded
in a quiescent fluid, are likely to be the future heat transfer media as their thermal conductivities are significantly
higher than those of parent liquids[1–5]. The enhancement of thermal conductivity achieved in nanofluids is
anomalously greater than the one predicted by conventional theories[2]. Following those experiment studies, var-
ious mechanisms and models have been proposed for explaining the anomalous enhancement of effective thermal
conductivity such as the effect of the solid/liquid interfacial layer[6–8], the Brownian motion[9–11], and so
on [12]. In addition, in view of the fact that carbon nanotubes possess large aspect ratio, Nan et al. generalized
Maxwell–Garnett approximation to derive a quite simple formula for the effective thermal conductivity of carbon
nanotube-based composites. The magnitude of large thermal conductivity enhancement observed in experiments
was well predicted within Nan’s model[13,14]. However, the model cannot explain the interesting phenomenon
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that the effective conductivity of nanotube suspensions is nonlinear with nanotube volume fractions. In this Let-
ter, by taking into account the geometric anisotropy and the physical anisotropy simultaneously, we would like
to present differential effective medium theory to investigate the effective thermal conductivity of nanofluids. The
geometric anisotropy results from the large aspect ratio of carbon nanotube, while the physical anisotropy originates
from the interfacial thermal resistance[14]. For randomly isotropic spherical inclusions, our new formula degener-
ates to the well-known differential one proposed by Bruggeman[15], which was applied to study the conductivity
of a fluid-filled sandstone. We shall show that numerical results are in good agreement with those of experimental
reports. More interestingly, even for extremely low volume fractions, we predict the nonlinear relation between the
effective thermal conductivity and the volume fraction.

In the course of understanding the thermal transport behavior of nanofluids, we shall generalize Bruggeman
differential effective medium theory[15] to estimate the effective thermal conductivity of nanofluids. First, we
consider the composites in which randomly oriented spheroidal nanoparticles with low volume fractionsf are
embedded in a quiescent fluid with the thermal conductivityKm. The assumptions that the particles are spheroidal
in shape and are randomly oriented were already adopted in previous works[6,8,13,14]. Incidentally, our theory can
be easily generalized to the composites of ellipsoidal particles. Due to the interfacial thermal barrier, the thermal
conductivity of spheroidal particles must be anisotropic, denoted byKx andKz along transverse and longitudinal
axes, respectively. Since the embedded spheroids are randomly oriented, the whole nanofluids will be isotropic.
According to the traditional Maxwell–Garnett theory[16,17], the effective thermal conductivityKe of composites
can be expressed as,

(1)Ke = Km

(
1+ f

3
(2βx + βz)

)
,

where

βx = Kx − Km

Km + Lx(Kx − Km)
and βz = Kz − Km

Km + Lz(Kz − Km)
,

hereLz [Lx ≡ (1− Lz)/2] is the depolarization factor of spheroidal particles (z denotes the rotational axis)[16],
given by

Lz =


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2p3 (−2p + e ln e−p

e+p
) if e > 1,
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2q3 (2q − eπ + 2e arctane

q
) if e < 1,

wheree is the eccentricity,p = √
e2 − 1, andq = √

1− e2. For different geometrical configurations of identical
roughing spheres,Lz can be interpreted as equivalent depolarization factors. For example, one hasLx = Lz =
0.435 for a single-strand chain, andLx = 0.0865,Lz = 0.827 forf cc lattice[18].

Starting with a homogeneous host material, we calculate the change inKe from Ke = Km atf = 0 toKe +�Ke

at�f ,

(2)�Ke = Km

2βx + βz

3
�f.

To carry out further iterations, we simply replyKm by Ke of the new homogenized composites and�f with
�f/(1− f ) due to the overlap effect. We arrive at the final differential equation,

(3)
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Integrating the above equation and imposing the initial condition thatKe = Km atf = 0, we obtain

(4)1− f =
(

Km

Ke

)3A(
Km + B1

Ke + B1

)3C1
(

Km + B2

Ke + B2

)3C2

,



Download English Version:

https://daneshyari.com/en/article/1865689

Download Persian Version:

https://daneshyari.com/article/1865689

Daneshyari.com

https://daneshyari.com/en/article/1865689
https://daneshyari.com/article/1865689
https://daneshyari.com

