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Two candidates for “almost-invariant” toroidal surfaces passing through magnetic islands, namely
quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits
(i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-
dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are
obtained by displacing closed field lines in the direction of steepest descent of magnetic action,

∮
A · dl.

A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian
definition. A modified Hamilton’s Principle is introduced that allows the use of Lagrangian integration
for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost
surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and
this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin
and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-
dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in
other 1 1

2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.
Published by Elsevier B.V.

1. Introduction

The understanding of nonintegrable Hamiltonian systems is
greatly simplified if one can construct a coordinate framework
based on a set of surfaces that are either invariant under the
dynamics or, where this is impossible, surfaces that are almost-
invariant. As invariant tori and cantori in nonintegrable systems
can be approximated by sequences of periodic orbits, the theory
of almost-invariant surfaces is built around periodic orbits, which
constitute the remanent invariant sets surviving after integrabil-
ity is destroyed by symmetry-breaking perturbations. We consider
two classes of almost-invariant surfaces, quadratic-flux-minimizing
(QFMin) surfaces [1] and ghost surfaces [2,3].

Almost-invariant tori are important in the theory of magnetic
confinement of toroidal plasmas, in particular to the theory of
transport in chaotic magnetic fields [4], and we set this Letter in
the context of the nonintegrable magnetic fields, B, encountered
in devices without a continuous symmetry. However, as magnetic
field lines are orbits of a 1 1

2 degree-of-freedom Hamiltonian sys-
tem, [5] the discussion is applicable, with appropriate translations
of terminology, to any such system—e.g. in this Letter we use
“magnetic field line” and “orbit” interchangeably.
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In Section 2 we introduce our general, arbitrary background
toroidal coordinate system s, θ, ζ , and an auxiliary poloidal angle
Θ(s, θ, ζ ) that allows us to define the quadratic flux in a form
independent of the choice of θ . In Section 3 we introduce the mag-
netic action integral, its first and second variations and Hamilton’s
Principle, while in Section 4 we introduce QFMin and (generalized)
ghost-surface pseudo-orbits as alternative strategies for continu-
ously deforming the action-minimax orbit associated with an is-
land chain into the corresponding action-minimizing orbit.

In Section 5 we present numerical results for field-line Hamil-
tonians of the form χ0(ψ) + εχ1(ψ, θ, ζ ), where the flux function
ψ plays the role of a momentum canonically conjugate to θ , and
ε parametrizes the strength of the perturbation away from the in-
tegrable case described by the action-angle Hamiltonian χ0. Plots
are presented comparing the uncorrected (i.e. with Θ = θ ) QFMin
and Lagrangian ghost curves of Ref. [2], superposed on field-line
puncture plots in a Poincaré surface of section. Two cases with
different strengths of perturbation are shown, both quite strongly
chaotic and both showing that the differences between even un-
corrected QFMin and ghost curves are very small (except for some
higher-order surfaces, in the more strongly chaotic case). This sug-
gests that the two, seemingly very different, approaches to defining
almost-invariant tori may be unified by appropriate choice of Θ ,
and that this will differ from θ by an amount small in ε .

In Section 6 we introduce a modified form of Hamilton’s Prin-
ciple that gives QFMin pseudo-orbits as extremizers of a pseu-
doaction. Section 7 gives the canonical, Hamiltonian form of this
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Fig. 1. A sketch of the general curvilinear toroidal coordinate system described in
the text. (Color online.)

action principle, while Section 8 discusses the transformation to
the Lagrangian form. In Section 9 we derive a consistency con-
dition that Θ must satisfy for corrected QFMin surfaces to be
Lagrangian ghost surfaces, finding in Section 10 an expression for
a choice of the auxiliary angle Θ that satisfies this criterion up
to first order in ε . The difference between uncorrected QFMin and
ghost/corrected-QFMin pseudo-orbits is shown indeed to be very
small, O (ε2).

In Section 11 we sketch our finite-element variational method
for numerical construction of QFMin surfaces using the new Hamil-
ton’s Principle introduced in Section 6, and in Section 12 we dis-
cuss the numerical construction of ghost surfaces via Galerkin pro-
jection onto the finite element basis.

Appendix A contains a derivation of the Euler–Lagrange equa-
tion for QFMin pseudo-orbits in the canonical representation, and
Appendix B shows the relation between the generalized definition
of ghost pseudo-orbit given in Section 4 and our more standard
Lagrangian form [2], used in the numerical work and in Section 9.

2. Coordinates and fluxes

As depicted in Fig. 1, we assume a general, essentially arbitrary
curvilinear toroidal coordinate system s(r), θ(r), ζ(r) has been es-
tablished, where r is a point in Euclidean 3-space and θ and ζ

are respectively poloidal and toroidal angles labeling points on the
toroidal isosurfaces of s, nested around the curve along which θ is
singular (s increasing outward). We assume the nonorthogonal ba-
sis {es,eθ ,eζ } ≡ {∇s,∇θ,∇ζ } is right handed, as is its reciprocal
basis {es,eθ ,eζ } ≡ {∂sr, ∂θ r, ∂ζ r}.

The directed infinitesimal area element on an arbitrary surface
Γ is dS ≡ dθ dζ n/n ·∇θ × ∇ζ , where n is the unit normal at any
point on Γ . Thus the net magnetic flux crossing an arbitrary torus
Γ (which we assume to contain the θ -coordinate singularity curve)
is

ϕ1[Γ ] ≡
2π∫
0

2π∫
0

dθ dζ
n ·B

n ·∇θ × ∇ζ
. (1)

This integral is independent of choice of coordinates. In fact the
absence of magnetic monopoles implies that ϕ1 vanishes identi-
cally, so it is independent of the choice of Γ also, whether it be
a magnetic surface (invariant torus of the field-line flow) or other-
wise.

Thus, to measure the amount by which Γ departs from be-
ing a magnetic surface, we are led to define the positive defi-
nite quadratic flux [1], defined with the aid of a new generalized
poloidal angle Θ(s, θ, ζ ),

ϕ2[Γ ] ≡ 1

2

2π∫
0

2π∫
0

dθ dζ
n ·B

n ·∇θ × ∇ζ

n · B

n ·∇Θ × ∇ζ
. (2)

The quadratic flux ϕ2 is independent of the choice of base coordi-
nates s, θ, ζ , but depends on the choice of Θ .

In the numerical work presented in this Letter, Θ has been cho-
sen equal to the given angle θ . However in the formal development
we distinguish it from θ so we can explore the consequences of
making different choices, in particular whether it can be chosen so
that QFMin tori coincide with ghost tori.

3. Magnetic action integral

The field-line action S [6] is a functional of a path C in Eu-
clidean 3-space, points on which we take to be labeled by the
toroidal angle ζ , which thus takes on the role played by time in
a more conventional Hamiltonian system. In this Letter we confine
our attention to paths that are closed loops, with θ increasing by
2π p when ζ increases by 2πq (p and q > 0 being mutually prime
integers), so the average rate of increase of θ along the path is the
rational fraction p/q, where the angular frequency ι- is called the
rotational transform.

The magnetic action is defined by

S[C] ≡
∫

C

A ·dl ≡
2πq∫
0

A · ṙ dζ, (3)

where the single-valued function A(r) is a magnetic vector poten-
tial for the magnetic field, B = ∇ × A, and dl ≡ ṙ dζ is an infinites-
imal line element tangential to C . A superscript dot denotes the
total derivative with respect to ζ , so that ṙ · ∇ζ ≡ 1. Hamilton’s
Principle is the statement that S is stationary, with respect to vari-
ations δr of C , when C is a segment of a physical orbit (in our case
a magnetic field line). If C is an open segment the variations are
to be taken holding the endpoints fixed, but if (as we assume) C
is a closed loop then the variations are unconstrained because the
endpoint contributions cancel. Then, after integration by parts, we
have the expansion for the total change in S

�S =
2πq∫
0

(
δr · δS

δr
+ 1

2
δr · δ2 S

δr δr
· δr + · · ·

)
dζ, (4)

where the first functional derivative is given by

δS
δr

≡ es δS
δs

+ eθ δS
δθ

+ eζ δS
δζ

= ṙ × B. (5)

Hamilton’s Principle is now readily verified: The Euler–Lagrange
equation δS/δr = 0 is satisfied if ṙ = B/Bζ , i.e. on a magnetic field
line.

The symmetrized Hessian operator is

2
δ2 S
δr δr

= − d

dζ
B × I − I × B

d

dζ
+ ṙ × (∇B)T − (∇B) × ṙ, (6)

where I = eses + eθ eθ + eζ eζ = eses + eθ eθ + eζ eζ is the identity
dyadic and superscript T denotes the transpose.

Note also that variations δr = r(ζ + δζ ) − r(ζ ) = r + ṙ δζ +
1
2 r̈(δζ )2 + · · · that simply relabel the path can be verified to leave

S invariant for arbitrary δζ(ζ ), as expected. Thus, to find a unique
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