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We developed a method to numerically construct a polycrystalline structure with a specified grain-
size distribution by utilizing the genetic algorithm, which is suitable for global optimization of complex
parametric space, and the Voronoi tessellation. The computational merits of our new method compared
with the conventional optimization method are: (a) it is able to escape more easily from local minima
of the penalty function; and (b) it is suitable for parallel processing. The method efficiently creates
input data for numerical simulations of microstructural evolution such as recrystallization, grain growth,
deformation, and fracture.
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1. Introduction

Solid materials in a polycrystalline state or polycrystals con-
sist of many independent grains, and their mechanical properties
are closely related to the microstructure, e.g. grain size and mis-
orientation between grains [1]. Thus the computational modeling
of polycrystalline materials, such as for grain growth, recrystalliza-
tion, deformation, and fracture, plays an important role in material
science and engineering [2–4]. The results obtained by these nu-
merical methods are often dependent on an initial polycrystalline
structure that is an input data set for these models. To numerically
reproduce a polycrystal we often resort to the Voronoi tessella-
tion constructed from a random distribution of points, e.g. [5].
Such a tessellation provides a numerical representation of poly-
crystals with the Poisson–Voronoi grain-size distribution, but real
polycrystals often exhibit a log-normal grain-size distribution. In
fact, input data with this characteristic is used by some authors
to obtain more realistic results, e.g. [6]. Generally speaking, we do
not know how much difference of the initial size-distribution in-
fluences on the numerical results obtained by various models. One
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difficulty when conducting such a study is that there is no explicit
method for numerically creating a polycrystalline structure with a
specified grain-size distribution, including the log-normal distribu-
tion.

To overcome this problem, we must resort to an inductive
method, which is in practical terms equivalent to applying a nu-
merical optimization method using iterative calculation. Gross and
Li [7] use such a technique and succeed in producing a de-
sired grain-size distribution by applying the inverse Monte Carlo
method. Xu and Li [8] also use this method to analyze the topo-
logical difference between a polycrystal with the Poisson–Voronoi
size-distribution, and one with the log-normal size-distribution.
However, this optimization is not an easy numerical task because
the penalty function has many local minima, and it takes an ex-
tremely long time to reach the desired size-distribution, because
countless attempts are necessary to escape from such minima. This
disadvantage impedes the availability of this method as a handy
tool. The problem becomes more serious when an application re-
quires polycrystals composed of a large number of grains.

We proposed a different approach using the genetic algorithm
[9,10]. The idea of the genetic algorithm is inspired by Darwinian
natural selection: Numerous attempts with different inputs per-
formed simultaneously, and those with excellent performance are
allowed to survive while the rest are abandoned. The surviving in-
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puts breed, slightly mutate, and become the next set of attempts.
Repetition of this procedure allows the most suitable inputs to
prosper and evolve, and leads to an input that satisfies a desired
condition. The genetic algorithm is so flexible that it can be ap-
plied to many optimization problems related to spatial pattern
formation, e.g. [11], and its application to materials science is also
becoming popular [12]. In the following we present a successful
application of the genetic algorithm to the problem of construct-
ing polycrystalline structures. Refs. [7,8] give a thorough overview
of the academic issues and practicalities involved in constructing
required polycrystals, but these also lacks sufficient description of
computational efficiency, which is extremely important for practi-
cal use. This Letter therefore concentrates on quantitative analyses
of the computational efficiency of the method.

2. Numerical method

The Voronoi tessellation, commonly used for producing poly-
crystalline structures, assigns the same number of points to the
space as the desired number of grains, and the space is subse-
quently divided into many polyhedra based on these points. Here-
after we call these points the center points. The simplest use of
this method is to choose the center points in a purely random
manner. In this case, however, the grain-size distribution P (d),
where d is the grain size, always exhibits the Poisson–Voronoi dis-
tribution [7]. To obtain a polycrystalline structure with the desired
grain-size distribution, it is necessary to somehow rearrange the
locations of the center points. A numerical method is required to
solve this problem because such a method is not given in an ex-
plicit way.

A numerical optimization method introduced by Gross and Li
[7] makes this rearrangement of the center points using the in-
verse Monte Carlo method: They define a penalty function W 2

that is the square of the distance between the desired grain-size
distribution and that given by the Voronoi tessellation as:

W 2 = 1

N

N∑

i=1

[
Pr(di) − P (di)

]2
, (1)

where N is the number of discretized values of the grain size;
di the discretized value of the grain size; and Pr(di) the desired
grain-size distribution. Their algorithm of optimization involves the
following steps: (a) Take a set of the center points randomly;
(b) Construct the Voronoi tessellation using these center points
and compute the size-distribution P (d) and the penalty function
W 2; (c) Move a center point randomly and recalculate W 2; (d) If
W 2 is smaller, keep the move; If W 2 is larger, keep the move only
if e−W /α < ρ is satisfied where ρ is a random number in the
range of (0,1] and α is a small number, otherwise abandon the
move; (e) Go to step (c). The iteration of this algorithm continues
until the penalty function becomes less than a certain criterion.
Although they report that the method is successful, there is a tech-
nical concern with this method: The searching process is likely to
be frequently trapped by local minima of the penalty function. The
larger α is the greater the possibility of escaping from the traps is,
but the risk of losing good candidates also increase, thus the opti-
mum value of α is difficult to determine. This algorithm can also
make only one new attempt per step while the searching space is
tremendously large and complex. This poses a serious disadvantage
especially when creating a polycrystal composed of a large number
of grains.

Our new method, which uses the Voronoi tessellation in a sim-
ilar fashion to the method of Gross and Li, introduces a genetic
algorithm instead of the inverse Monte Carlo method. In our ge-
netic algorithm, we treat these center points as a set of genes,
a polycrystalline structure produced by the set of the center points

Fig. 1. The basic concept of the application of the genetic algorithm to constructing
polycrystalline structures: The words in the parentheses are the corresponding roles
in the genetic algorithm.

as an individual, and a ensemble of polycrystals as the population
(shown in Fig. 1).

To begin the genetic algorithm, an initial set of individuals,
i.e. an ensemble of initial different polycrystals must be ready.
Each initial individual, a polycrystal with a certain configuration
of grains, is constructed by selecting the center points in a purely
random manner; i.e. all initial individuals are an assembly of dif-
ferent polycrystals with the Poisson–Voronoi size-distribution and
ready to be the first generation of the algorithm. To obtain the
second generation, the fitness function F of each individual of the
first generation must be calculated. The fitness function is a mea-
sure that indicates how exactly the grains made by the Voronoi
tessellation, arrange themselves in the desired grain-size distribu-
tion. We define this as the inverse of the penalty function, such
as F = 1/W 2. Individuals in the second generation are randomly
selected from those of the first generation, but the probability
of being selected is proportional to the fitness function. A newly
selected polycrystal must go through a mutation of randomizing
genes or shifting randomly center points; a center point to mutate
is randomly selected, and the selection probability is proportional
to the grain volume the center point belongs to. The mutation oc-
curs at a constant rate at each center point selected, with some
new individuals experiencing many mutations while others expe-
rience none. We consider two types of mutations: a new center
point is selected completely randomly; and it randomly shifts a
short distance. The first type of mutation plays an important role
in accelerating global optimization because it efficiently allows the
searching process to escape from local minima of the penalty func-
tion. The second type of mutation is useful for fine adjustments in
the evolutional process. Each time a mutation is requested, one
of the two types of mutation is selected with the same proba-
bility. The mixing of two individuals, called the gene crossover,
was not used, because it did not improve computational efficiency.
Consequently each infant of the new generation is produced from
a single mutated parent without gene input from another par-
ent. Fitness gradually increases as the population evolves or higher
generations are created by repeating this procedure. The iteration
continues until one individual satisfies a certain criterion.

In this genetic algorithm, we also adopted the elitism strategy;
a few of the fittest individuals, that is the elites, are kept without
mutation thus avoiding the accidental loss of the best individuals,
which can occur in the inverse Monte Carlo method.

A new computer program was developed specifically for evalu-
ating the above method. In the program, we define the cubic lattice
space with lattice points that have an integer state indicating the
grain each point belongs to. The integer value of each lattice point
is determined by the closest center point for the Voronoi tessel-
lation. Grain size is given by the cubic root of the total number
of lattice points inside the grain. The most time-consuming part
of the program is the computation of the Voronoi tessellation, i.e.
determining of the integer state of all lattice points. Fortunately
a parallel processing technique can be applied, and we can create
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