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In hybrid dynamical systems including both continuous and discrete components, an interplay between a
continuous trajectory and a discontinuity boundary can trigger a sudden qualitative change in the system
dynamics. Grazing phenomena, which occur when a continuous trajectory hits a boundary tangentially,
are well known as a representative of such phenomena. We demonstrate that a grazing phenomenon of
a chaotic attractor can result in its sudden disappearance and initiate chaotic transients. The mechanism
of this grazing-induced crisis is revealed in an illustrative example. Furthermore, we derive a formula to
obtain the critical exponent of the power law on the mean duration of chaotic transients.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Interactions between continuous dynamics and discrete events
can be found in many real-world systems such as impacting
mechanics [1], switched electronic circuits [2,3], impulsive sys-
tems [4], and intermittent medical therapies [5]. Hybrid dynami-
cal systems theory provides a mathematical framework for treat-
ing these systems including both continuous and discrete compo-
nents [6–8]. Although the control theory for some classes of hy-
brid systems has been developed significantly since the 1960s [9],
rich nonlinear and bifurcation phenomena in hybrid systems are
still noteworthy topics of intensive investigation in nonlinear sci-
ence [10]. In fact, hybrid systems can exhibit nonlinear phenom-
ena such as grazing, border-collision, sliding, and chattering, all
of which cannot be observed in ordinary smooth dynamical sys-
tems [11]. In this Letter, our attention is particularly focused on
one of such discontinuity-induced phenomena, namely, grazing
phenomena of chaotic attractors.

Grazing contacts between a continuous trajectory and a discon-
tinuity boundary have been intensively investigated to understand
a sudden qualitative change of system dynamics. We first consider
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the following simple class of hybrid systems [11], to review graz-
ing phenomena and related terminologies:

ẋ = F (x) if x ∈ S+, (1)

where

S+ = {
x ∈ D ⊂ R

n
∣∣ H(x) > 0

}
. (2)

The continuous state vector x of system (1) is defined in some do-
main D ∈ R

n . The system function F and the scalar function H are
supposed to be smooth and well defined in the open neighborhood
of S+ . We assume that some discrete state transition occurs at the
surface

Σ = {
x ∈ D

∣∣ H(x) = 0
}
. (3)

In other words, smoothness of an orbit in S+ is lost on Σ due to
non-smooth processes such as impact, jump, switch, and sliding.
The smooth orbit generated by system (1) is denoted by φ(x0, t)
with the initial condition x0 in S+ , which evolves until the orbit
strikes the discontinuity boundary Σ .

Next we assume that there exists a grazing point x∗ at which
a trajectory grazes Σ as illustrated in Fig. 1, where S− = {x ∈
D ⊂ R

n: H(x) < 0}. The grazing trajectory through x∗ is indi-
cated by (a). The conditions of the grazing point are given as
follows [11]:
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Fig. 1. Schematic illustration of the local neighborhood of the grazing point x∗ in
system (1). The grazing manifold G is the set of points on trajectories that have a
grazing contact with Σ . The intersection of the grazing manifold and the discon-
tinuity boundary Σ is denoted by G = G ∩ Σ . (a) A grazing trajectory through x∗ .
(b) A trajectory which does not intersect with Σ . (c) A trajectory which transver-
sally contacts with Σ and undergoes a discrete event.

H(x∗) = 0, (4)
∂

∂t
H

(
φ(x∗,0)

) = 0, (5)

∂2

∂t2
H

(
φ(x∗,0)

)
> 0. (6)

The grazing point x∗ is a point on Σ as described by Eq. (4). The
condition (5) indicates that the grazing trajectory is just tangent to
Σ at the grazing point. The open condition (6) is also necessary
to guarantee that the grazing trajectory is locally a parabola that
points downwards towards Σ .

A full local neighborhood of x∗ can be divided into two regions,
that is to say, the set of points on trajectories that do not intersect
with Σ as indicated by (b) in Fig. 1 and the set of points on tra-
jectories that do transversally intersect as indicated by (c) in Fig. 1.
The destination of a trajectory after intersecting with Σ is highly
influenced by the discrete event defined on Σ and a possible vec-
tor field defined in S− . The boundary between the two regions is
given by the grazing manifold G of points on trajectories that have
a grazing contact. The intersection of G and Σ is the grazing set:

G = G ∩ Σ = {
x ∈ Σ: (∂ H/∂x)(dF/dt) = 0

}
, (7)

which corresponds to the set of grazing points.
A smooth variation of an initial condition of the flow φ can

change transient dynamics qualitatively through a grazing phe-
nomenon. This phenomenon is called transient grazing [12]. The
critical initial condition x∗

0 leading to transient grazing can be ob-
tained by simultaneously solving Eqs. (4)–(5) and x∗ = φ(x∗

0, τ )

with respect to unknown variables including x∗
0 and the traveling

time τ until the grazing contact, under the condition (6). Transient
grazing has been mainly investigated with switching-time bifurca-
tions so far [13].

A special case where a grazing trajectory is a periodic solution
has received much more attention. We suppose that a limit cycle
confined in S+ exists near the boundary Σ at a certain value of
a system parameter μ. As μ is smoothly varied, a grazing phe-
nomenon of the limit cycle can take place at μ = μ∗ . This is called
a grazing bifurcation of a periodic solution. The grazing limit cycle
can be specified by solving Eqs. (4)–(5) and the periodic condi-
tion x∗ = φ(x∗, T ) with respect to unknown variables including the
grazing point x∗ , the period T of the limit cycle, and the critical
parameter value μ∗ , under the condition (6). Detailed analyses of
grazing bifurcations of periodic solutions can be found in the stud-
ies of switched electronic circuits [14], power electronics [12], and
intermittent medical therapies [15].

Grazing phenomena are closely related to border-collision bi-
furcations [16,17], which are also known as C-bifurcations [18].

Normal form maps can be derived from grazing orbits by con-
sidering an appropriate Poincaré section [19]. Despite abundant
investigations on transient grazing and periodic grazing, few stud-
ies have dealt with grazing phenomena of chaotic solutions. The
purpose of this Letter is to illustrate that a grazing phenomenon
of a chaotic attractor can trigger a boundary crisis yielding chaotic
transients. We uncover the mechanism of the grazing-induced cri-
sis. Furthermore, the mean lifetime of chaotic transients caused by
the grazing-induced crisis is characterized.

The rest of this Letter is organized as follows. In Section 2 we
demonstrate a boundary crisis via which a chaotic attractor dis-
appears in an illustrative example of hybrid systems. In Section 3
we reveal that the crisis is induced by a grazing phenomenon of
the chaotic attractor. In Section 4 we characterize the duration of
chaotic transients resulting from the grazing-induced crisis. The re-
sults are summarized in Section 5.

2. A boundary crisis in a hybrid dynamical system

In order to demonstrate a boundary crisis to be focused, we
introduce a hybrid systems model representing prostate tumor
growth under intermittent androgen suppression therapy [5,15,20].
The model assumes that a prostate tumor consists of androgen de-
pendent (AD) cells and androgen independent (AI) cells. Androgen
suppression is effective against AD cells but not for AI cells. There-
fore, continuous androgen suppression often leads to a prostate
cancer relapse due to an increase of AI cells under an androgen-
depleted condition. An alternative treatment is intermittent andro-
gen suppression, which aims to delay or hopefully prevent a cancer
relapse by keeping a tumor susceptible to androgen suppression
[5]. We suppose that androgen suppression is stopped when the
serum prostate-specific antigen (PSA) value falls to a lower thresh-
old level and re-initiated when the PSA value increases to an upper
threshold level. On-treatment and off-treatment periods are alter-
nately repeated in the intermittent therapy as long as possible.
Since tumor dynamics is different between on-treatment and off-
treatment periods, the time evolution of tumor growth can be
described by a hybrid (switched) dynamical system as follows:

ẋ =
(
αx

z + k1k2

z + k2
− βx

z + k3k4

z + k4
− mxy

z0 − z

z0

)
x,

ẏ =
(

mxy
z0 − z

z0

)
x + (

αy(1 − ez) − βy
)

y,

ż = −(
z − z0(1 − u)

)
/τz, (8)

u:

{
0 → 1 if v(x, y) = r1 and v̇(x, y) > 0,

1 → 0 if v(x, y) = r0 and v̇(x, y) < 0,
(9)

where the positive continuous variables x, y, and z represent the
population of AD cells, the population of AI cells, and the androgen
concentration, respectively, and the discrete variable u represents
on-treatment (u = 1) or off-treatment (u = 0). The parameters αx ,
βx , k1, k2, k3, and k4 are related to proliferation and apoptosis rates
of AD cells. The parameters αy , βy , and e are related to prolif-
eration and apoptosis rates of AI cells. The parameter mxy is the
rate of mutation of AD cells to AI cells. The parameters z0 and τz

are the maximum (normal) androgen level and the time constant
of the androgen dynamics, respectively. Since the last equation of
system (8) includes u, the continuous system is discontinuously
switched by the rule (9) which depends on the monitored PSA
value v(x, y). For simplicity we assume v(x, y) = x + y. The pa-
rameters r0 and r1, satisfying 0 < r0 < r1, represent the lower and
upper threshold levels of the PSA value, respectively. For detailed
backgrounds of the above model and its biological relevance, see
Refs. [5,15].
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