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We present a theoretical investigation of the excitation of multiple electrostatic wakefields by the
ponderomotive force of a short electromagnetic pulse propagating through a dense plasma. It is found
that the inclusion of the quantum statistical pressure and quantum electron tunneling effects can
qualitatively change the classical behavior of the wakefield. In addition to the well-known plasma
oscillation wakefield, with a wavelength of the order of the electron skin depth (λe = c/ωpe , which
in a dense plasma is of the order of several nanometers, where c is the speed of light in vacuum
and ωpe is the electron plasma frequency), wakefields in dense plasmas with a shorter wavelength (in
comparison with λe) are also excited. The wakefields can trap electrons and accelerate them to extremely
high energies over nanoscales.

© 2009 Elsevier B.V. All rights reserved.

Three decades ago, Tajima and Dawson [1] demonstrated that
intense laser pulses can efficiently generate electron plasma waves
(EPWs) in their wake as they travel through a low density plasma.
Physically, the ponderomotive force [2] of intense laser pulses
pushes electrons locally in plasmas, which in turn oscillate at the
electron plasma frequency with respect to the neutralizing back-
ground of immobile positive ions. The displacement of the elec-
trons within the plasma gives rise to large electric fields, which
can be much larger than any fields possible in a non-ionized ma-
terial. An electron beam can surf on the electric field of a plasma
wave picking up energy from the EPWs just as a surfer picks up
energy from a water wave in the ocean [3]. The idea of Tajima and
Dawson has now been experimentally verified worldwide [4–9].

Recently, there has been a great deal of interest in investigat-
ing the properties of high-energy density plasmas that are created
by high intensity laser pulses. To probe dense matters, such as
those also in the interior of white dwarf stars and Jovian plan-
ets, powerful laser-produced x-ray sources have been developed.
They produce monoenergetic line radiation capable of penetrat-
ing through dense and compressed materials at solid density and
above [10]. The x-ray measurement techniques are indicative of
a dense Fermi-degenerate plasma state in laboratory. In a dense
Fermi plasma, the electron degeneracy leads to the consideration
of the Fermi–Dirac electron distribution and electron quantum tun-
neling through the quantum Bohm potential [11–13]. Furthermore,
there also appear the spin force and spin magnetized electron cur-
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rent due to electron-1/2 spin in dense magnetoplasmas [14,15].
The quantum statistical pressure, the quantum Bohm force and the
quantum spin force drastically affect the electron dynamics, and
therefore one encounters numerous novel collective interactions in
dense quantum plasmas. Specifically, it should be stressed that the
quantum Bohm force effect, arising from the finite width of the
electron wave function, gives rise to the dispersion of EPWs at
nanoscales, which has important consequences to localized EPW
structures [13,16] and plasmonic turbulences [17,18].

In this Letter, we present a theoretical investigation of the mul-
tiple EPW (wakefield) excitation by the ponderomotive force of a
short laser pulse, accounting for the quantum statistical pressure
and quantum Bohm force effects in the EPW dynamics. For our
purposes, we shall use the quantum Madlung fluid equations [12],
which is composed of the electron continuity and electron mo-
mentum equations, together with the Poisson equation, and de-
rive the EPW (wakefield) equation in the presence of the radia-
tion pressure. Choosing a specific form for the laser envelope, we
solve the EPW equation analytically and numerically. We find that,
due to the quantum Bohm force, there appear multiple wakefields
at different nanoscales in dense quantum plasmas. In addition to
the well-known wakefield, with a wavelength of the order of the
electron skin depth, a short wavelength wakefield is also excited,
with a scale length approaching the Compton wavelength. It turns
out that for the case of a laser pulse in the optical regime, the
short scale wakefield is suppressed. However, for short laser pulse
lengths and/or high density plasmas, the energy density of the
short scale wakefield may be comparable to that of the long wave-
length wakefield. The consequences of our results are discussed.

We consider the propagation of a high-frequency laser pulse,
with the vector potential A = Ã exp(ikx − iωt) + c.c., in an unmag-
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netized dense plasma. Here c.c. stands for the complex conjugate.
The ponderomotive force of the high-frequency laser pulse drives
longitudinal EPWs (wakefields) with a frequency much smaller
than ω, but fast enough for the dynamics to take place on the
electron timescale. The ions form a neutralizing background in our
dense plasma. The governing equations for the wakefields are then
the electron continuity equation

∂n1

∂t
+ ∇ · (n0v) = 0, (1)

the electron momentum equation

∂v

∂t
= e

m
∇φ − e2

2m2c2
|Ã|2 − V 2

F

n0
∇n1 + h̄2

4m2
∇∇2n1, (2)

and the Poisson equation

n1 = ∇2Φ

4πe
, (3)

where n1 is the electron density perturbation in the equilibrium
value n0, v is the electron fluid velocity perturbation, φ is the
wakefield potential, e is the magnitude of the electron charge, m is
the electron rest mass, V F = (2π h̄/

√
3m)(3n0/8π)1/3 is the Fermi

speed, and h̄ is the Planck constant divided by 2π . We have thus
assumed that the Fermi electron pressure dominates over the elec-
tron thermal pressure, appropriate for a high density plasma of
moderate or low electron temperature. Several comments are in
order. The second term in the right-hand side of (2), which rep-
resents the light pressure or the laser ponderomotive force, comes
from the averaging (over the laser period) the advection and non-
linear Lorentz force in the electron equation of motion [2]. The
fourth term in the right-hand side of (2) is the quantum Bohm
force involving quantum electron tunneling in a dense quantum
plasma.

Combining Eqs. (1)–(3) we obtain the plasma wakefield equa-
tion in the presence of the light pressure in our dense plasma[

∂2

∂t2
+ ω2

p − v2
F ∇2 + h̄2

4m2
∇4

]
Φ = ω2

p

2c2m
|Ã|2, (4)

where ωpe = (4πn0e2/me)
1/2 is the electron plasma frequency. In

dense laboratory plasmas and in compact astrophysical objects, the
latter is in the x-ray regime.

Let us now consider the excitation of one-dimensional wake-
field by the high-frequency laser pulse that is propagating with
the group velocity. Thus, we look for stationary solutions of (4) in
a comoving frame. Letting ξ = x − v gt , where v g is the group ve-
locity, we obtain from Eq. (4)[

h̄2

4m2

∂4

∂ξ4
+ (

v2
g − v2

F

) ∂2

∂ξ2
+ ω2

p

]
Φ = ω2

p

2c2m
|Ã|2. (5)

A simple special case is found when v2
g = v2

F , which results
in exponentially damped wakefields. However, below we will con-
sider the case where we can have multiple oscillatory wakefields,
which occur for plasmas of moderate density (see the condition
below). We start by investigating the solutions to the left-hand
side of Eq. (5) in the absence of the driving laser field. Making
the ansatz Φ ∝ exp(ikξ), we obtain

k4 − k2
ak2 + k4

b = 0,

where k2
a = 4m2(v2

g − v2
F )/h̄2 and k4

b = 4m2ω2
p/h̄2. The solutions

of (6) are

k2 = +k2
a

2
±

√
k4

a

4
− k4

b,

unless the plasma density is very high (or v2
g � v2

F ), k4
a/4 � k4

b
and the two solutions separate into oscillations with very different
scale lengths. Denoting the solutions with k+ and k− , we have for
k4

a/4 � k4
b

k2+ ≈ k2
a = 4m2(v2

g − v2
F

)
/h̄2,

k2− ≈ k4
b/k2

a = ω2
p/

(
v2

g − v2
F

)
.

The analysis below will be valid for arbitrary values of k+ and
k− , however, as long as both modes are oscillatory, which holds
whenever

v2
g > v2

F and

m2(v2
g − v2

F

)2
> h̄2ω2

p

apply. When the lower inequality is a strong one, the oscillations
at k+ is close to the Compton scale (at least when |v2

g − v2
F | � c2),

and the k− oscillations is the standard plasma oscillation wake-
field, although somewhat modified by the inclusion of the Fermi
pressure. As a starting point, however, no separation in magnitude
of the two scales will be assumed.

Firstly, we rewrite Eq. (5) as[
∂4

∂ξ4
+ k2

a
∂2

∂ξ2
+ k4

b

]
Φ = η|Ã|2, (6)

where η = 2mω2
p/h̄2c2. Eq. (6) can be integrated to yield

Φ = η

(k2+ − k2−)

ξ∫
−∞

[
1

k+
sin

[
k+(ξ − ξ ′)

]

− 1

k−
sin

[
k−(ξ − ξ ′)

]]
η|Ã|2(ξ ′)dξ ′, (7)

where we have assumed the boundary condition that Φ is zero
before the arrival of the high-frequency laser pulse.

Next, we assume that the laser pulse profile is a Gaussian, viz.
|A|2 = A2

0 exp(−ξ ′ 2/L2). The energy density of the high-frequency
laser pulse is assumed to be high enough such that the high-
frequency laser pulse is changing its shape on a longer timescale,
as compared to the wakefield generation process. The simplest
case is that of a very short pulse, i.e. when L 
 k−1− ,k−1+ , when
the wakefield after the laser pulse passage can be written as

Φ = Φ+ sin(k+ξ + ϕ+) + Φ− sin(k−ξ + ϕ−),

where ϕ+ and ϕ− are constant phase angles and the amplitudes of
the wakefields are proportional to the high-frequency laser pulse
energy, and are given by

Φ+ = η

(k2+ − k2−)k+

∞∫
−∞

|Ã|2(ξ ′)dξ ′,

Φ− = η

(k2+ − k2−)k−

∞∫
−∞

|Ã|2(ξ ′)dξ ′.

In general, the wakefield amplitudes after the laser pulse pas-
sage can be written as

Φ± = η

(k2+ − k2−)k±

∞∫
−∞

cos(k±ξ)|Ã|2 dξ ′,

such that the electric field amplitudes E± of the different wake-
fields in the case of a Gaussian profile is

E± = η

(k2+ − k2−)
W exp

(−k2±L2/4
)
, (8)
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