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A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct
a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states
form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states
we construct the Fock–Bergmann representation related to the particle quantization. This quantization
procedure takes into account a circle topology of the classical motion.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Constructing semiclassical or “classical-like” states in quan-
tum mechanics is in general an open problem. For systems with
quadratic Hamiltonians there exists a well-known procedure to
construct the so-called coherent states (CS, or Glauber–Klauder–
Sudarshan, or standard CS), which usually are accepted as quantum
states that behave like their classical counterpart, see e.g. [1–4].
The CS are widely and fruitfully being utilized in different areas
of theoretical physics. The standard CS turned out to be orbits of
the Heisenberg–Weyl group. This observation allowed one to for-
mulate by analogy some general definition of CS for any Lie group
[5–8] as orbits of the group factorized with respect to a stationary
subgroup. There exists a connection between the CS and the quan-
tization of classical systems, in particular, systems with a curved
phase space, see e.g. [9,10].

In [11] a modified approach to constructing semiclassical or co-
herent states (we call them also CS) was proposed. A technical
realization of the approach recipes depends on each concrete case,
in particular, a principal one is the problem of proving the reso-
lution of the unity by the constructed CS. In the present article,
we construct coherent states for a charged particle in a constant
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and uniform magnetic field closely by following the approach of
[11], more exactly a squeezed version of these states. By solving a
specific version of the Stieltjes moment problem we make explicit
the resolution of the unity of the constructed CS and so become
able to perform the Berezin–Klauder–Toeplitz or, more simply CS,
quantization of the complex plane. A generalization of the obtained
results to a model on a non-commutative plane will be the topic
of a further work.

As far as physical applications are concerned, the resolution of
the unity by CS is fundamental for the analysis, or decomposi-
tion, of states in the Hilbert space of the problem, or of operators
acting on this space. In particular, it allows for a “classical” read-
ing of quantum dynamical systems, in Schrödinger representation,
through the time behavior of mean values of quantum observables
in coherent states. Nice illustrations of this approach are provided
by Perelomov in [5]. It was precisely this symbolic formulation that
enabled Glauber and others to treat a quantized boson or fermion
field like a classical field, particularly for computing correlation
functions or other quantities of statistical physics, such as parti-
tion functions and derived quantities.

2. Coherent states of a particle in magnetic field

Consider a charged particle with charge e and mass μ placed
in a uniform and constant magnetic field of magnitude B in the
z-direction. The motion of the particle in a plane perpendicular to
the magnetic field can be described by the quantum Hamiltonian
(c = h̄ = 1)

0375-9601/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2009.03.061

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:gazeau@apc.univ-paris7.fr
mailto:baldiott@fma.if.usp.br
mailto:gitman@dfn.if.usp.br
http://dx.doi.org/10.1016/j.physleta.2009.03.061


J.P. Gazeau et al. / Physics Letters A 373 (2009) 1916–1920 1917

H = 1

2μ

(
P 2

1 + P 2
2

)
, Pi = pi − e Ai,

Ai = − B

2
εi j x

j, i, j = 1,2, (1)

where xi and pi are canonical operators of coordinates and mo-
menta of the particle and εi j(ε12 = 1) is the Levi-Civita tensor. It
is useful to introduce operators xi

0, which are integrals of motion
and correspond to the orbit center coordinates,

xi
0 = xi + 1

μω
εi j P j, ω = eB

μ
,

and also the angular momentum operator of the relative motion J ,
which in the present case is just proportional to the Hamiltonian,

J = − 1

ω
H = 1

2

(
r1 P2 − r2 P1

)
, ri = xi − xi

0.

Two independent Weyl–Heisenberg algebras underlie the symme-
tries and the integrability of the model. The first one concerns
the operators r0± = x1

0 ± ix2
0 that obey [r0−, r0+] = 2/μω. The sec-

ond one concerns the relative motion operators ri , r± = r1 ± ir2 =
−[P2 ∓ i P1]/μω with [r+, r−] = 2/μω. They allow one to con-
struct a Fock space with orthonormal basis {|m,n〉} obtained by
repeated actions of the normalized raising operators:

√
μω/2r0+|m,n〉 = √

m + 1|m + 1,n〉,√
μω/2r−|m,n〉 = √

n + 1|m,n + 1〉.
Like in [11], the CS |z0, ζ 〉 are introduced as solutions of the eigen-
value problems

r0−|z0, ζ 〉 = z0|z0, ζ 〉,
Z |z0, ζ 〉 = ζ |z0, ζ 〉, z0, ζ ∈ C, (2)

with Z = e− J+ 1
2 r+ . The commutation relations [ J , r±] = ±r± re-

produce the appropriate algebra to study the circular motion, see
[12]. These normalized CS are tensor product of the state |ζ 〉, that
is an eigenvector of Z with the standard CS |z0〉. They read in
terms of the Fock basis,

|z0, ζ 〉 = 1√
N (z0, ζ )

×
∞∑

m,n=0

(
μω

2

) m+n
2 zm

0√
m!

ζne− 1
2 (n+ 1

2 )2

√
n! |m,n〉, (3)

where N stands for a normalization factor.
One can easily see that the time evolution of the CS states is

only reduced to the classical time evolution of the parameter ζ .
Indeed, using the relations [r0±, H] = 0 and eit H Ze−it H = e−iωt Z ,
and applying the evolution operator U (t) = exp(−iHt) to the state
|z0, ζ 〉 we obtain

U (t)|z0, ζ 〉 = ∣∣z0, ζ(t)
〉
, ζ(t) = ζ exp(−iωt).

In order to play their role of “classical-between-quantal” bridge,
the states |z0, ζ 〉 have to resolve the identity in the above Fock–
Hilbert space. This specific (over-)completeness can be proved by
resolving the identity in the corresponding Fock–Bergmann repre-
sentation. As was stated in [11], the task is equivalent to solving
the following moment problem

∞∫
0

tn�q(t)dt = n!q n(n+1)
2 , q = e2, (4)

for an unknown weight function �(t). Let us generalize the above
problem and, consequently, obtain a squeezed version of the CS
(2), by introducing the following displacement operator

Zλ = exp

[
λ

2

(
1

2
− J

)]
r+. (5)

This operator coincides with Z from (2) for λ = 2, and with just
r+ for λ = 0 (or q = 1), i.e., the case where we have the ten-
sor product of standard coherent states, called in this context the
Malkin–Man’ko CS [13]. For an arbitrary λ the operator Zλ controls
the dispersion relations of the angular moment and of the position
operators. In this case, the construction of the resolution of iden-
tity from the eigenstates of the above operator, and consequently
the proof that they form an (over-)complete set, is equivalent to
solving the moment problem of the form

∞∫
0

tn�q(t)dt = n!q n(n+1)
2 , q ≡ eλ, λ � 0,

for some unknown weight function �q(t). Below, we find �q for
an arbitrary q ∈ [1,∞) and deal with the corresponding CS as the
eigenstates of the operator Zλ . In addition, we discuss the exten-
sion of �q for 0 < q � 1.

3. Solving Stieltjes moment problem

Let us consider the classical phase space C
2 = {x = (z, ζ ),

z ∈ C, ζ ∈ C} provided with the measure:

μ(dx) = e−|z|2 d2z

π
�q

(|ζ |2)d2ζ

π
, (6)

where d2z and d2ζ are the respective Lebesgue measures on the
complex planes. The positive weight function 0 � t 	→ �q(t) solves
the following Stieltjes moment problem:

∞∫
0

tn�q(t)dt = xn! = n!q n(n+1)
2 , q � 1, (7)

where xn
def= nqn and we have adopted the generalized factorial no-

tation as xn! def= xnxn−1 · · · x1, x0! = 1.
In the Hilbert space

L2(
C

2,μ(dx)
) = L2

(
C, e−|z|2 d2z

π

)
⊗ L2

(
C,�q

(|ζ |2)d2ζ

π

)

we select the orthonormal set of functions

Φm,n(x)
def= z̄m

√
m!

ζ̄n

√
xn! , (8)

which we put in one-to-one correspondence with the elements
|m,n〉, m,n ∈ N, of an orthonormal basis of a separable Hilbert
space H. The states (8) obey a finite sum property for any x ∈ C

2:∑
m,n∈N

∣∣Φm,n(x)
∣∣2 = e|z|2 Eq

(|ζ |2) < ∞, (9)

where Eq(t) is the generalized “exponential” built from the se-
quence xn:

Eq(t) =
∞∑

n=0

tn

xn! =
∞∑

n=0

q− n(n+1)
2

tn

n! . (10)

It is clear that, due to the condition q � 1, the convergence radius
of this power series is infinite. On the other hand it is zero if q < 1.
In the sequel we use the notation

N (x)
def= e|z|2 Eq

(|ζ |2).
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