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This article discusses the effectiveness of a fresh analytical method in solving a prey–predator problem,
which is described as a system of two nonlinear ordinary differential equations. The method of interest is
the multistage variational iteration method (MVIM), which provides a slight modification of the classical
variational iteration method (VIM). We shall compare solutions of the classical VIM along with MVIM
and match them against the conventional numerical method, Runge–Kutta (RK4) (fourth-order).
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1. Introduction

To mathematically describe the full dynamics of any biologi-
cal system is a daunting task. Most biological systems are formed
by nonlinear ordinary differential equations. This Letter studies a
mathematical model of a certain prey–predator model, which de-
scribes the natural habitual existence of rabbits and foxes. These
two animals are modeled to live together where the foxes prey on
rabbits while the rabbits survives on clovers. Assuming there are
infinite supply of clovers, the population (over time) of both ani-
mals depends on its initial population, food supply and of course
the parameters which govern the population dynamics modeled.
For an explicit exposition of the mathematical modeling of this
system, we refer readers to [1]. The said problem was solved by
Adomian decomposition method by Biazar and Montazeri [2] and
Chowdhury et al. [3] and also the power series method (PSM)
which can be found in [4]. Rafei et al. [5] and Yusufoğlu and Erbaş
[6] have introduced the variational iteration method (VIM) in solv-
ing this dynamical system. The prey–predator system is demon-
strated in (1) and (2) below

dx

dt
= x(a − by), (1)

* Corresponding author. Tel.: +603 8928 7287; fax: +603 8921 2116.
E-mail address: sumei@uniten.edu.my (S.M. Goh).

dy

dt
= −y(c − dx), (2)

where x(t) and y(t) represent the populations of rabbits and foxes,
respectively at time t and a, b, c, d are known coefficients.

Our work concentrates on a newly modified version of VIM,
which is called the multistage variational method (MVIM) and we
will present comparative solutions with VIM and the numerical
method, fourth-order Runge–Kutta method (RK4). We chose the
conventional RK4 as our benchmark for comparison purposes as it
is widely accepted and used. The MVIM possesses a time-marching
algorithm which speeds the convergence of the solutions rapidly.
It has been applied to numerous problems such as in [7–9]. In the
event of this study, we will also highlight the limitations of VIM
and ADM, presented by [2,4–6]. These traditional analytic meth-
ods only provide valid solutions in a very short time frame for this
particular prey–predator system.

2. Ideas on VIM and the multistage approach

Solving a system of nonlinear ordinary differential equations
(ODEs) or even partial differential equations (PDEs) requires hard
work. It is a tough job when we have to rely on numerical inte-
gration, perturbation techniques, some particular transformations,
linearization or discretization in order to obtain their approximate
solutions. Numerical integration methods are more flexible than
any analytical approach, but it has its disadvantages. They react
quite sensitively on the selection of time-step size to be depend-

0375-9601/$ – see front matter © 2008 Published by Elsevier B.V.
doi:10.1016/j.physleta.2008.11.009

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:sumei@uniten.edu.my
http://dx.doi.org/10.1016/j.physleta.2008.11.009


108 S.M. Goh et al. / Physics Letters A 373 (2008) 107–110

able [10]. On the other hand, analytical techniques do offer some
options in acquiring solutions but they most likely require some
sort of linearization techniques to be successful.

VIM has generated much buzz in the mathematical world. It
was a theory spun by Prof. He [11–17]. This analytical technique
overcomes some of the disadvantages of other methods by pro-
ducing some accurate results plus its convenience (to use). Further-
more, VIM can provide a continuous representation of the approx-
imated solution, which allows better information of the solution
over the time interval. The Runge–Kutta method (RK4), on the
other hand, provide solutions in discretized form, only at two ends
of the time interval, thereby making it complicated in achieving
a continuous representation. VIM is fast emerging as an essential
tool used in researches, thanks to the contribution of numerous
researchers, such as, Wazwaz [18], Momani and Odibat [19,20], Ab-
dou and Soliman [21,22], Moghimi and Hejazi [23], Batiha et al.
[24,25] and Inc [26].

VIM has a simple approach. We illustrate its basic concepts
with a general differential equation

Lu + Nu = g(t), (3)

where L is a linear operator, N a nonlinear operator, and g(x) an
inhomogeneous or forcing term. This will allow us to construct a
correction functional as below

ui,n+1(t) = ui,n(t) +
t∫

t0

λ
{

Lui,n(s) + Nũi,n(s) − g(s)
}

ds, (4)

where i = 1,2, . . . ,m, λ is a general Lagrange multiplier [27],
which will be identified using the variational theory, n denotes
the nth approximation and ũi,n is considered as a restricted vari-
ation whereby δũi,n = 0. The Lagrange multipliers can be easily
and precisely obtained for linear problems. However, for nonlin-
ear problems, it is not as trivial. The nonlinear terms are treated
as restricted variations such that the Lagrange multiplier can be
determined as a simpler form.

We will show that the approximated solutions for (4) in the
numerical simulations of this Letter are not valid for large t . Ra-
tionally, it is easy to conceptualize that to ensure validity of the
approximations for large t , we need to solve the system under
arbitrary initial conditions and treat (4) as an algorithm for ap-
proximating the solutions of (1)–(2) in a sequence of intervals [25],
whereby the solution from [t0, t) will be derived by subdividing
this interval into [t0, t1), [t1, t2), . . . , [t j−1, t) and applying the re-
cursive formula of (5) on each subinterval.

ui,n+1(t) = ui,n(t) +
t∫

t∗
λ
{

Lui,n(s) + Nũi,n(s) − g(s)
}

ds. (5)

Notice that this strategy gives a new construction of the correction
functional (5) with a variable t∗ as the lower limit of the integra-
tion instead of a fixed lower limit of t0 in (4). The fixed limits is
a norm used in the classical VIM which can be seen in [15–17].
This is the main difference between the newly modified version
introduced by Batiha et al. [25] and the standard VIM. These au-
thors have applied the method on a class of nonlinear system of
ordinary differential equations with much success.

The initial approximation in each interval is taken from the so-
lution in the previous interval,

ui,0(t) = ui(t
∗) = c∗

i (6)

where t∗ is the left-end point of each subinterval and c∗
i is denoted

as the initial approximations for i = 1,2, . . . ,m.
By knowing the first initial conditions one would be able to

solve (5) for all unknowns ui,n(t) (i = 1,2, . . . ,m; n = 0,1, . . .).

In order to carry out the iteration in every subinterval of equal
length �t , [t0, t1), [t1, t2), [t2, t3), . . . , [t j−1, t j = t), we need to
know the values of the following:

u∗
i,0(t) = ui(t

∗), i = 1,2, . . . ,m. (7)

These informations are typically not directly attainable, but through
the initial value t∗ = t0, we could derive all the initial approxima-
tions. This is done by taking the previous initial approximation
from the nth-iterate of the preceding subinterval given by (4), i.e.

u∗
i,0(t) � ui,n(t∗), i = 1,2, . . . ,m and t∗ ∈ (t0, t j). (8)

The scheme mentioned above is called the multistage VIM or
MVIM. It offers accurate solutions over a longer time frame (more
stable) compared to the standard VIM [25]. This distinctive strategy
grants the iterative algorithm a time-marching scheme which sig-
nificantly drives forward the convergence of the solutions precisely
with great rapidity. Intuitively, the value of t∗ increases accord-
ing to the designated time-step size in each iteration computation.
Each amplified time step will produce a new approximation value
for the desired iteration step and the process is continued until
the targeted time frame is achieved. In other words, each new ini-
tial approximation is deliberately substituted into the subsequent
calculation, making it a fast-forwarding kind of solver. This makes
sense as the more partitions are used, the more accurate the ap-
proximations (errors are minimized) are but the downside is hav-
ing to deal with longer computational time. The solutions should
converge to accurate values as the number of iterative steps in-
creases. Convergence to accurate solutions depends highly on the
choice of initial approximations which then determine the number
of iterates that give the most precise solution. Running the itera-
tions on different time steps may provide us detailed information
of its precision.

We shall construct the correction functional based on this sim-
ple modification to VIM on the system in (1) and (2) into such a
form

xn+1(t) = xn(t) +
t∫

t∗
λ1(τ )

{
dxn

dτ
− axn + bx̃n yn

}
dτ , (9)

yn+1(t) = yn(t) +
t∫

t∗
λ2(τ )

{
dyn

dτ
+ cyn − dx̃n yn

}
dτ , (10)

where λ1 and λ2 are general Lagrange multipliers, n denotes
the nth approximation, x̃n yn denotes restricted variations, i.e.
δx̃n yn = 0.

By taking variation with respect to the independent variables xn

and yn , we will obtain the following:

δxn+1(t) = δxn(t) + δ

t∫
t∗

λ1(τ )

{
dxn

dτ
− axn + bx̃n yn

}
dτ , (11)

δyn+1(t) = δyn(t) + δ

t∫
t∗

λ2(τ )

{
dyn

dτ
+ cyn − dx̃n yn

}
dτ . (12)

Table 1
Four different cases of various parameters used in analysis.

Case a b c d x(0) y(0)

1 1 1 0.1 1 14 18
2 0.1 1 1 1 14 18
3 0.1 1 1 1 16 10
4 1 1 0.1 1 16 10
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