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A mathematical technique based on an auxiliary equation and the symbolic computation system Matlab
is developed to construct the exact solutions for a generalized Camassa–Holm equation and a nonlinear
dispersive equation with variable coefficients. It is shown that the variable coefficients of the derivative
terms in the equations cause the qualitative change in the physical structures of the solutions.
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1. Introduction

Camassa and Holm [1] derived a completely integrable wave equation

ut − uxxt + 3uux + 2kux = 2uxuxx + uuxxx (1)

by retaining two terms that are usually neglected in the small amplitude, shallow water limit. The function u is the fluid velocity in the
x direction. The constant k is related to the critical shallow water wave speed. The term uuxxx makes Eq. (1) nonlinear in its highest
order derivatives and so it lies in the class of nonlinear dispersive wave models. Camassa and Holm [1] showed that for all k, Eq. (1) is
integrable, and for k = 0, it has travelling wave solutions of the form ce−|x−ct| , which are called peakons. As shown in [1,2], the Camassa–
Holm equation (1) is bi-Hamiltonian, and hence admits an infinite hierarchy of symmetries and conservation laws.

Following Camassa and Holm’s work, Eq. (1) and its various generalized forms have been studied extensively. Matsuno [3] employed
a perturbation method to investigate the Camassa–Holm equation and obtained its cusp and loop soliton solutions. Wazwaz [4] acquired
the solitary wave solutions for a modified form of the Camassa–Holm equation by using the tanh method and the sine–cosine method.
Lai and Xu [5] investigated the compact and noncompact structures for two types of generalized Camassa–Holm equations and obtained
their compactons, solitons, solitary patterns, periodic solutions and algebraic travelling wave solutions. Wang and Tang [6] employed some
special phase orbits and find four new exact wave solutions for Eq. (1). Making use of the sub-ODE method and the generalized auxiliary
equation method, Yomba [7,8] made some important discovery in finding the exact travelling wave solutions of the generalized Camassa–
Holm equations and other types of partial differential equations. By using the integral factor techniques for solving differential equations,
Zheng and Lai [9] obtain the exact travelling wave solutions for a generalized Camassa–Holm equation and a nonlinear dispersive equation
with constant coefficients.

Motivated by the desire to extend the work made in [9], we write the following generalized Camassa–Holm equation with variable
coefficients
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ut + 2k(t)ux − uxxt + a(t)uux = b(t)uxuxx + uuxxx, b �= 0,−1, (2)

and the nonlinear dispersive equation

ut + 2k(t)ux + a(t)uux − b1(t)uxxx = b(t)uxuxx − uuxxx, b �= 0,1, (3)

where a(t), b(t), b1(t) and k(t) are functions of t . When a(t), b(t), b1(t) and k(t) become constants, various forms of exact travelling wave
solutions for Eq. (2) were obtained in [6–8] and some exact travelling wave solutions for both Eqs. (2) and (3) were acquired in [9].

In this Letter, making use of the auxiliary differential technique, we obtain many exact solutions with wave variable ξ = px + q(t)
for Eqs. (2) and (3) where p is a constant and q(t) depends on t . It might be said that the exact solutions obtained in this Letter are
non-travelling wave solutions in the classical sense. When the variable coefficients appearing in Eqs. (2) and (3) become constants, the
solutions include those presented in [9].

2. Brief description of the auxiliary differential equation method

To illustrate the auxiliary differential method, we consider the nonlinear partial differential equation

P (u, ut , ux, uxx, uxt , utt , . . .) = 0 (4)

by assuming its solution in the form

u(x, t) = f (t) + h(t)z(ξ), ξ = p(t)x + q(t), (5)

where f (t), h(t), p(t) and q(t) are all unknown functions of t . We let z(ξ) satisfy the following auxiliary differential equation(
dz

dξ

)2

= a1 + a2z + a3z2, (6)

where ai (i = 1,2,3) are arbitrary real constants. The solutions of Eq. (6) are listed in Table 1 (see appendix of Jeffrey [10]).
Substituting Eqs. (5) and (6) into Eq. (4) and setting the coefficients of z j(ξ) ( j = 0,1,2, . . .) and xszi(ξ)

√
a1 + a2z(ξ) + a3z2(ξ) (s, i =

0,1,2, . . .) to zero yield a set of algebraic equations for f (t), h(t), p(t) and q(t). Using the symbolic computation system Matlab to solve
the algebraic equations, we obtain the explicit expressions of f (t), h(t), p(t) and q(t), from which we get the solution of Eq. (4).

3. Exact solutions for Eq. (2)

We assume that the solutions of Eq. (2) take the form

u(x, t) = f (t) + h(t)z(ξ), ξ = p(t)x + q(t), (7)

where f (t), h(t), p(t) and q(t) are functions of t and z(ξ) satisfies Eq. (6).
Substituting Eqs. (6) and (7) into Eq. (2) and letting each coefficients of xs zi(ξ)

√
a1 + a2z(ξ) + a3z2(ξ) (s = 0,1, i = 0,1,2) and z j(ξ)

( j = 0,1) to be zero, we obtain the following equations with respect to unknown functions f (t), h(t), p(t) and q(t)

f ′(t) = 0, h′(t) = 0, p′(t) = 0, (8)

a(t)h2(t)p(t) − a3b(t)h2(t)p3(t) − a3h2(t)p3(t) = 0, (9)

2k(t)h(t)p(t) − a3h(t)p2(t)q′(t) + a(t)h(t)p(t) f (t) − a2

2
b(t)h2(t)p3(t) + h(t)q′(t) − a3h(t)p3(t) f (t) = 0. (10)

Solving the above algebraic equations with the help of Matlab, we acquire that f (t), h(t) and p(t) have to be constants and

p = ±
√

a(t)

a3[b(t) + 1] , (11)

q(t) = ±
∫

2 f a3a(t)b(t) + 4a3k(t)[b(t) + 1] − ha2b(t)a(t)

2a3[a(t) − b(t) − 1]

√
a(t)

a3[b(t) + 1] dt, (12)

where f , h, a1, a2 and a3 are arbitrary constants with a3 �= 0, h �= 0 and a(t) − b(t) − 1 �= 0. From formula (11), we derive that factor√
a(t)

b(t)+1 must maintain as a constant. We write a(t)
b(t)+1 = M = constant in this section.

It is noted that the solution u(x, t) of Eq. (2) can be obtained from (11) and (12) together with the expressions of z(ξ) in Table 1. From
Table 1, we know that z(ξ) has different forms determined by the values of constants a1, a2 and a3. Therefore, it is necessary for us to
discuss different situations relating to the solutions of Eq. (2)

u1.1(x, t) = f − ha2

2a3
+ h exp

{
ε
√

Mx + ε
√

M

∫ [
2M f a3b(t) − Ma2hb(t)

2a3(M − 1)
+ 2k(t)

(M − 1)

]
dt

}
,

a3 �= 0, a2
2 − 4a1a3 = 0, (13)

u1.2(x, t) = f + εh

√
−a1

a3
sin

[√−Mx + √−M

∫
M f b(t) + 2k(t)

M − 1
dt

]
,

a1 �= 0, a2 = 0, M < 0, (14)
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