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In this Letter, we consider the general expressions of peaked traveling wave solutions for CH and CH-γ
equations. The orbital stability of these peakons are directly proved in the H1 norm. Some previous
results are extended.
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1. Introduction

Camassa and Holm [1] derived a shallow water wave equation

ut + 2kux − uxxt + 3uux = 2uxuxx + uuxxx, (1)

which is called Camassa–Holm equation (CH equation). For k = 0,
the above equation implies the following equation:

ut − uxxt + 3uux = 2uxuxx + uuxxx. (2)

They showed that Eq. (2) has peaked solitary wave solutions

u1(x, t) = ce−|x−ct|, (3)

which have discontinuous first derivative at the wave peak in con-
trast to the smoothness of most previously known specious of
solitary waves and thus are called peakons. Eqs. (1) and (2) arise
as models for shallow water waves [1,23]. The peakons capture a
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characteristic of the travelling waves of greatest height—exact trav-
elling solutions of the governing equations for water waves with
a peak at their crest [24–26]. Simper approximate shallow wa-
ter models (like the classical Korteweg–de Vries equation) do not
present travelling wave solutions with this feature. The peakons
are to be understood as weak solutions in the sense of papers [27,
28].

CH equation (1) has been studied in a great lot of papers (see,
for instance, [2–17]), and many satisfactory results have been ob-
tained. Other than peakons Eqs. (1), (2) model breaking waves
by having smooth solutions which develop singularities in finite
time in the form of breaking waves [1,8,29,30]. Here we review
some results on stability of solitary waves. When k = 0, Con-
stantin and Strauss [4] investigated the orbital stability of peakons
(3) for Eq. (2), they proved the stability of peakons (3) in the
H1 norm by a direct method depending on the special struc-
ture of (2). Their relative results are presented as follows, in [4],
u(x, t) ∈ C([0, T ); H1(R)) is called a solution to (2) if u(x, t) is a
solution of (2) in the sense of distribution and the following quan-
tities

E(u) =
∫
R

(
u2 + u2

x

)
dx and F (u) =

∫
R

(
u3 + uu2

x

)
dx
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are conserved. Peakons (3) is noted as

u1(x, t) = cϕ(x − ct) = ce−|x−ct|,

and the main theorem in [4] reads

Theorem. If u ∈ C([0, T ); H1(R)) is a solution to (2) with

∥∥u(·,0) − cϕ
∥∥

H1 <

(
ε

3c

)4

, 0 < ε < c,

then∥∥u(·, t) − cϕ
(· − ξ(t)

)∥∥
H1 < ε for t ∈ (0, T ),

where ξ(t) ∈ R is any point where the function u(·, t) attains its maxi-
mum.

For k �= 0, by using the abstract results of Grillakis [18], it was
proved that all H1 solitary wave solutions of (1) are orbital sta-
ble [5].

However, when k �= 0 for (1), it has peakons not vanishing 0
as |x| → ∞. For instance, in case of k �= 0 and c = k/2, Liu and
Qian [2] demonstrated that Eq. (1) has peakons of form

u2(x, t) = (3k/2)e−|x− k
2 t| − k. (4)

Further, in case of k �= 0, Zhang [3] obtained general expression of
peakons as follows:

u3(x, t) = v(x, t) − k = (k + c)e−|x−ct| − k. (5)

Clearly, (3) and (4) are special cases of (5). Stability of such
peakons as form (5) has not been solved yet.

In this Letter, firstly we consider the stability of general
peakons (5) for Eq. (1). Using some transformation and the method
in [4], we prove the orbital stability of peakons (5) in the H1

norm. Secondly, by the relationship between CH equation and
CH-γ equation (see Section 3) we show the orbital stability of
the general peakons for CH-γ equation.

2. Stability of peakons for CH equation

In this section we prove the stability of peakons (5). The so-
lutions u3(x, t) approach the constant −k as |x| → ∞. From the
structure of peakons (5) we know that u3(x, t) may be regarded
as the addition of functions v(x, t) and a constant −k, where
v(x, t) = (k + c)e−|x−ct| → 0 as |x| → ∞, and E(v) and F (v) for
v(x, t) are conserved. So let

X1 = {
u(x, t): u(x, t) = ũ(x, t) − k

}
with ũ(x, t) ∈ C([0, T ); H1(R)) and E(ũ) and F (ũ) are conserved, k
is the constant in Eq. (1).

Note u0 = u(x,0), ũ0 = ũ(x,0) and one of our results is given
by

Theorem 1. Suppose ũ(x, t) ∈ C([0, T ); H1(R)) and u(x, t) =
ũ(x, t)−k is a solution to CH equation (1). For any ε with 0 < ε < k + c,

there exists a δ = ε4

81(k+c)3 such that if

‖u0 − u3‖H1 � δ,

then∥∥u(·, t) − u3
(· − ξ(t)

)∥∥
H1 < ε for t ∈ (0, T ),

where ξ(t) ∈ R is any point where the function u(·, t) attains its maxi-
mum.

Remark 1. In Theorem 1, u(x, t) is called a solution to (1) if
u(x, t) ∈ X1 and u(x, t) is a solution of (1) in the sense of distribu-
tion. For k = 0, u(x, t) is namely the solution defined to (2) in [4],
and Theorem 1 is restricted to the theorem in [4].

As (5) are solutions of CH equation (1), substituting (5) into (1)
we get that v(x − ct) = (k + c)e−|x−ct| are solutions of equation

vt − kvx − vxxt + 3v vx + kvxxx = 2vx vxx + v vxxx. (6)

Similarly, ũ(x, t) is a solution of Eq. (6) on the assumption that
u(x, t) = ũ(x, t) − k is a solution to Eq. (1). Since

‖u0 − u3‖H1 = ‖ũ0 − v‖H1 ,∥∥u(·, t) − u3
(· − ξ(t)

)∥∥
H1 = ∥∥ũ(·, t) − v

(· − ξ(t)
)∥∥

H1 ,

and u(·, t) attaining its maximum at ξ(t) means ũ(·, t) attaining
its maximum at ξ(t), the question of stability of u3(x, t) for CH
equation (1) can be reduced to the question of stability of v(x −
ct) = (k + c)e−|x−ct| for Eq. (6) from the analysis above. In fact,
Eq. (6) has the following conserved quantities:

E(v) =
∫
r

(
v2 + v2

x

)
dx,

F1(v) =
∫
R

(
v3 + v v2

x − kv2 − kv2
x

)
dx.

So F (v) = ∫
R(v3 + v v2

x)dx is also an invariant of Eq. (6).

Lemma 1. For every u ∈ X1 and ξ ∈ R

∥∥u(·, t) − u3(· − ξ)
∥∥2

H1 = ∥∥ũ(·, t) − v(· − ξ)
∥∥2

H1

= E(ũ) − E(v) − 4(k + c)
(
ũ(ξ, t) − (k + c)

)
.

Proof. By direct calculation we get E(v) = 2(k + c)2 and

∥∥ũ(·, t) − v(· − ξ)
∥∥2

H1

= E(ũ) + E(v) − 2
∫
R

ũ(x, t)v(x − ξ)dx − 2
∫
R

ũx(x, t)vx(x − ξ)dx

= E(ũ) + E(v) − 2
∫
R

ũ(x, t)v(x − ξ)dx − 2

ξ∫
−∞

ũx(x, t)v(x − ξ)dx

+ 2

∞∫
ξ

ũx(x, t)v(x − ξ)dx

= E(ũ) + E(v) − 4(k + c)ũ(ξ, t)

= E(ũ) − E(v) − 4(k + c)
(
ũ(ξ, t) − (k + c)

)
. �

Lemma 2. For u = ũ − k in X1 , let M = maxx∈R{ũ(x, t)}. If ‖u0 −
u3‖H1 � δ for some δ = δ1(k + c) where δ1 < 1

20 , then

∣∣E(ũ) − E(v)
∣∣ � δ

(
2
√

2(k + c) + δ
)

and∣∣M − (k + c)
∣∣ � 2

√
(k + c)δ.

Proof.
(1) Owing to

E(v) = 2(k + c)2, E
(
ũ(x,0)

) = E
(
ũ(x, t)

)
,

and

‖u0 − u3‖H1 = ‖ũ0 − v‖H1 ,
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