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Stochastic and bistochastic matrices providing positive maps for spin states (for qudits) are shown to form
semigroups with dense intersection with the Lie groups IGL(n,R) and GL(n,R) respectively. The density
matrix of a qudit state is shown to be described by a spin tomogram determined by an orbit of the
bistochastic semigroup acting on a simplex. A class of positive maps acting transitively on quantum states
is introduced by relating stochastic and quantum stochastic maps in the tomographic setting. Finally,
the entangled states of two qubits and Bell inequalities are given in the framework of the tomographic
probability representation using the stochastic semigroup properties.
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1. Introduction

The description of a physical system admitting a probabilistic
interpretation, be it classical or quantum, requires two collections
of objects called states and observables, say S and O respectively,
along with a pairing μ associating with any state ρ and observ-
able A a Borel probability measure on the real line R. If A is
measured while the system is in a state ρ,μA,ρ represents the
probability distribution for the observed values of A. Thus if E ⊆ R

is a Borel set, μA,ρ(E) ∈ [0,1] is the probability that the measured
value of A will be in the set E when the system is known to be in
the state ρ . From a general point of view, above properties seem to
be the minimal features that any physical system should possess.

This approach has been studied by several authors, for instance
one can find a nice discussion by Mackey [1]. The set S describes
the basic mathematical structure we are dealing with, while μA,ρ

provides us with a physical interpretation. This probabilistic point
of view is compatible with convex combinations on the space of
states, indeed if ρ1 and ρ2 give rise to probability distributions, by
setting μA,λρ1+(1−λ)ρ2 = λμA,ρ1 + (1 − λ)μA,ρ2 we define a new
probability distribution when 0 � λ � 1. Usually one requires some

* Corresponding authors.
E-mail addresses: manko@na.infn.it (V.I. Man’ko), marmo@na.infn.it (G. Marmo),

simoni@na.infn.it (A. Simoni), ventriglia@na.infn.it (F. Ventriglia).

additional structure telling us how the system changes from time s
to a later time t , i.e., requires the existence of a family of mappings
Ut,s : S → S representing the dynamics and called evolution oper-
ator. The requirement that a state at a given time determines the
state at a later time forces us to postulate the semigroup property

Ut2,t1 = Ut2,s ◦ Us,t1 , (1)

with Ut,t the identity. Within this setting

μ : S × O → {Borel probability measures on R}. (2)

A subset of observables is said to be a tomographic set τ if
it allows to identify the state ρ (to “reconstruct” the state) when
{μA,ρ}A∈τ is known. Very often τ is generated by acting with a
group G on some fiducial observable A0, i.e., it is the orbit of G
in O through A0. According to the group we use and the fidu-
cial observable we start with, we deal with symplectic tomogra-
phy, photon-number tomography and so on. While this approach
is general enough to allow us to deal both with classical and
quantum systems, here, to be more definite, we shall consider a
quantum system with a finite number of levels.

States for quantum systems with a finite number of levels will
be thought of as the spin states (or qudits) they can be described
by density matrices which are hermitian nonnegative (2 j + 1) ×
(2 j + 1) matrices with unit trace. The linear maps of the spin
states, positive maps, can be described by (2 j + 1)2 × (2 j + 1)2
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matrices with special properties [2]. Recently it was shown [3–5]
that qudit states can be described by probability distributions of
random spin projection (called tomogram) depending on the di-
rection of the quantization axis. In view of this the geometry of
qudit states can be associated with the geometry of a simplex and
the set of positive maps of qudit states can be associated with
stochastic and bistochastic matrices moving points on the simplex.
The aim of this work is to find the connection of spin tomograms
with a unitary matrix containing eigenvectors of the density ma-
trix of a qudit state and a point on the simplex which has the
eigenvalues of the density matrix as its coordinates.

Another aim of the work is to define positive maps of qudit
states through the transitive actions of both the unitary group on
the eigenvectors of the density matrix and the stochastic matrix
semigroup on the eigenvalues of the density matrix regarded as
points of the simplex.

The qudit states of multipartite systems can be either separable
or entangled. We formulate the properties of a qudit tomogram,
which is the joint probability distribution of two spin projections
on their own quantization axes, able to distinguish separable and
entangled states. We consider the Bell inequalities [6,7] in the con-
text of the properties of stochastic matrices constructed by using
spin tomograms. The Cirelson [8] bound 2

√
2 for the Bell-CHSH

inequality of two qubits will be connected with some properties
of a universal stochastic matrix obtained from the tomographic
probability distribution describing maximally entangled two spin-
1/2 states. The connection of positive maps with the semigroup
of stochastic matrices provides the possibility to find a new re-
lation of the maps with the Lie group of the general linear real
transformations GL(n,R) for bistochastic matrices and with the in-
homogeneous group IGL(n,R) for stochastic matrices.

This connection (which seems to have been unknown) provides
a possibility to construct unitary representations of stochastic and
bistochastic semigroups by reducing known infinite dimensional
unitary irreducible representations of the Lie groups to the subsets
of the Lie groups which are the semigroups under consideration.

The Letter is organized as follows: in Section 2 we review
the spin tomography approach for one and two qudits. Exam-
ples of a qutrit and two qubit states in tomographic probability
representation are studied in Section 3. The relation of stochastic
and bistochastic semigroups with Lie groups is discussed in Sec-
tion 4, mainly in the case a qutrit. In Section 5 a class of positive
maps acting transitively on quantum states is introduced by re-
lating stochastic and quantum stochastic maps in the tomographic
setting. The relation of stochastic matrices with Bell inequality vi-
olation for entangled states of two qubits is discussed in Section 6.
Some conclusions and perspectives are finally drawn in Section 7.

2. Spin tomograms and unitary group

As it was shown in [3,9,10] the qudit state described by a
(2 j+1)×(2 j+1)-matrix ρ can be also described by a tomographic
probability distribution function, or tomogram, W (m, U ) � 0 where
m is the spin projection: m = − j,− j + 1, . . . , j − 1, j; and U is a
unitary (2 j + 1) × (2 j + 1)-matrix. This matrix can be considered
as a matrix of an irreducible representation of the rotation group
depending on two Euler angles φ, θ determining the direction of
quantization (or a point on the Bloch sphere S2). The physical
meaning of the tomogram W (m, U ) is that, in the spin state with
the given density matrix ρ , it gives the probability to obtain m
as spin projection on the direction determined by the two an-
gles φ, θ . It corresponds to choose {U † J zU } as tomographic set of
isospectral observables, where J z = ∑ j

m=− j m|m〉〈m| is one of the
generators of the irreducible representation of the rotation group,

so that W (m, U ) is nothing but the value of the concentrated mea-
sure μU † J z U ,ρ at the spectral point m:

W (m, U ) = μU † J z U ,ρ(m) = Tr U †|m〉〈m|Uρ = 〈m|UρU †|m〉. (3)

The probability distribution is obviously nonnegative and normal-
ized, i.e.,

j∑
m=− j

W (m, U ) = 1 (4)

for any direction of the quantization axis. The spin tomogram can
be also regarded as the diagonal matrix element of the rotated
density matrix UρU † in the natural basis |m〉.

The relation is invertible and knowing the tomogram W (m, U )

for the matrices U (φ, θ) of an irreducible representation of SU(2)

one obtains the density matrix ρ by means of a linear transform
[9,10] which is the analog of the integral Radon transform but
in the space of qudit states. Thus the quantum state of a qudit
(a spin- j state) is known if the probability distribution W (m, U )

of random spin projection as a function of the unitary matrix U
is known. The tomogram W (m, U ) can be used, consequently, in
alternative to spinors (wave functions) or density matrices for de-
scribing spin states. The information on the spin state contained
in the tomogram is redundant since it is sufficient to know the
tomogram only for several directions determined by a set of an-
gles {φk, θk}, whose number corresponds to the number of pa-
rameters determining the density matrix, equal to (2 j + 1)2 − 1.
But at the same time the dependence of the tomogram W (m, U )

on the parameters of the unitary matrix U provides some ad-
vantage in considering the spins, j = 0,1/2,1, . . . ; and also the
quantum states of several spins in an unified approach. For two
qudits (spin j1 and j2) the tomogram of the quantum state with
the (2 j1 + 1)(2 j2 + 1) × (2 j1 + 1)(2 j2 + 1) density matrix ρ is the
normalized joint probability distribution

W (m1,m2, U ) = 〈m1m2|UρU †|m1m2〉 (5)

of two random spin projections m1 = − j1,− j1 + 1, . . . , j1 − 1, j1
and m2 = − j2,− j2 + 1, . . . , j2 − 1, j2 onto the corresponding di-
rections determined by two pairs of Euler angles, φ1, θ1 and φ2, θ2.
The information contained in the tomogram with a dependence on
the matrix U of such a form is sufficient to reconstruct the den-
sity matrix ρ . But we define the tomogram by Eq. (3) to use the
redundant information on the quantum state of bipartite systems
in studying the entanglement properties of the system states. We
remark that in Eq. (3) we could also use the full unitary group in-
stead of SU(2) and this we will do sometimes in the following.

The tomographic probability distribution of a qudit state
W (m, U ) can be considered as a column vector 
W (U ) with com-
ponents

W1(U ) = W ( j, U ), W2(U )

= W ( j − 1, U ), . . . , W2 j+1(U ) = W (− j, U ). (6)

Since all the components are nonnegative and the normalization
condition (4) holds, from a geometrical point of view the compo-
nents {Wk} of the tomographic probability vector determine the
coordinates {xk} of points belonging to a simplex. For a qubit such
a simplex is the segment {x1 + x2 = 1; 0 � x1, x2 � 1} in the plane
x1, x2. For a generic qudit the simplex is a polyhedron in a (2 j+1)-
dimensional space determined by equations:

2 j+1∑
k=1

xk = 1, 0 � x1, x2, . . . , x2 j+1 � 1. (7)

Thus, the spin tomogram is a function of a unitary group element
U with values in a simplex. The linear maps of probability vectors


W ′(U ) = M 
W (U ) (8)
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