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The quantum hydrodynamic model is employed to study the soliton and chaotic structures of dust ion-
acoustic waves in quantum dusty plasmas consisting of electrons, ions, and negatively/positively charged
dust particles. By means of the reductive perturbation technique, two-dimensional Davey–Stewartson (DS)
system is derived. By improving the extended projective method and the extended tanh-function method,
a separation of variables solution with arbitrary functions for the Davey–Stewartson system is obtained.
Many soliton and chaotic structures such as localized nonlinear coherent structure, line-soliton structure,
periodic wave pattern structure, Rössler and Lorenz chaotic structures are given. It is found that these
structures are effected by the quantum effects.

Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

Quantum plasmas have gained much interests in ultrasmall electronic devices [1], dense astrophysical environments [2], ultracold
plasmas [3] and laser plasmas [4]. In quantum plasmas, the de-Broglie wavelength of the charge carriers, i.e., λB = h/(2πmv), becomes
comparable to the spatial scale of the system, so the quantum effects are expected to play a crucial role in plasma dynamics. Many
authors have studied linear and nonlinear wave propagation in quantum plasmas. For instance, Refs. [5–8] have studied the dispersion
properties and nonlinear dynamics of unmagnetized and magnetized quantum plasmas. Shukla and Stenflo [9] have investigated the dis-
persion properties of the shear Alfvén modes in homogeneous ultracold quantum magnetoplasmas. Among the nonlinear structures in
quantum plasmas, both dust acoustic waves (DAW) and dust ion-acoustic waves (DIAW) have been investigated in Refs. [10,11]. Most of
these work have studied the quantum DAW and quantum DIAW by using the perturbation technique and various nonlinear equations are
obtained such as Korteweg–de Vries (KdV) [10], Kadomtsev–Petviashvili (KP) equation [12], Zakharov–Kuznetsov (ZK) equation [13], non-
linear Schrödinger equation (NLSE) [14] and so on. In fact, considering a different scale transform, one can also obtain Davey–Stewartson
(DS) system, which governs the dynamics of the nonlinear modulated wave packets [15].

Therefore, in this Letter, we employ the QHD model to study the small-amplitude, two-dimensional DIAW in a quantum dusty plamas
(QDP) and obtain the DS system. By using a new method which combines the advantages of both extended projective method [16–19] and
extended tanh-function [20], we successfully obtain a separation of variables solution for the DS system. Many types of soliton structures
such as the localized nonlinear coherent structure, line-soliton structure, periodic wave pattern structure, etc., are obtained. On the other
hand, chaotic dynamics has been intensively investigated with the help of simple low-dimensional models such as Lorenz [21] system
and the Rössler system [22] in plasmas physics [23–26]. For instance, a novel hyperchaos is obtained in the quantum Zakharov system
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for plasmas [24]. Chaotic behavior of relativistic electron motion in a free-electron laser with realizable helical wiggler and axial magnetic
field is investigated by using Poincaré maps and Liapunov exponents [26]. Therefore, in this Letter, we try to study the chaotic structures
with the help of different chaotic system for the DIAW in QDP.

This Letter is organized in the following fashion. In Section 2, we present the QHD model to study the DIAW in unmagnetized QDP. In
Section 3, by means of the reductive perturbation technique, we study the modulated DIAW and obtain DS system governing the evolution
of the wave envelope. In Section 4, we solve the DS system by a new method and obtain many types of soliton structures and chaotic
structures for the modulated DIAW in quantum dusty plasmas. The summary is given in Section 5.

2. Basic equations

Let us study the two-dimensional obliquely propagating dust ion-acoustic waves (DIAW) in a three-species quantum dusty plasmas
(QDP), whose constituents are dust particles, inertial ions with a background stationary dust of constant charged while the electrons are
taken inertialess. DIAW in such a quantum plasma system is described by the following normalized equations:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ni
∂t + ∂(ni u)

∂x + ∂(ni v)
∂ y = 0,

∂u
∂t + u ∂u

∂x + v ∂u
∂ y + ∂φ

∂x = 0,

∂v
∂t + u ∂v

∂x + v ∂v
∂ y + ∂φ

∂ y = 0,

∇2φ = βne − αNd0 − ni,

(1)

where ∇ = x̂∂/∂x + ŷ∂/∂ y. ni and u, v are the number density and the fluid velocity of the ion particles normalized by ni0 and the
quantum ion-acoustic velocity Csi = √

2K B TFe/mi , respectively. ne is the number density of the electrons normalized by ne0. φ is the
electrostatic wave potential normalized by 2K B TFe/e. The space and time coordinates x, y and t are normalized by the quantum Debye
length λD = √

2K B TFe/4πni0e2 and the ion plasma period ω−1
pi = √

mi/4πni0e2, respectively. Further, α = ±1 for positive/negative dust
particles, β = ne0/ni0 so that β = 1 + αNd0 with Nd0 = zd0nd0/ni0. The primes from normalized quantities have been dropped and the
terms proportional to me/mi have been disregarded in Eqs. (1) in the limit me/mi � 1.

We assuming that the electrons in a 2D Fermi plasma follow the pressure law pe = (me V 2
Fe/2ne0)n2

e , where V Fe = √
2K B TFe/me is the

Fermi speed [27]. Therefore, the inertialess electron momentum equation reads

∇φ − ∇ne + H2
e

2
∇

(∇2√ne√
ne

)
= 0, (2)

where He =
√

h̄2ω2
pi/memi C4

si is the non-dimensional quantum diffraction parameter.

Integrating Eq. (2) once with boundary conditions ne = 1 and φ = 0 at ±∞, we obtain

φ − ne + 1 + H2
e

2
√

ne
∇2√ne = 0. (3)

3. Derivation of Davey–Stewartson system

In order to study the modulated DIAW in QDP with transverse perturbations, we apply the reductive perturbation technique (RPT)
to Eqs. (1) and (3). Different from the Sagdeev potential approach, the RPT is a well-known method mostly applied to small-amplitude
nonlinear waves. We introduce the independent variable as ξ = ε(x − ct), η = ε y, τ = ε2t .

The dependent variables are expanded as [15]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ni = 1 + ∑∞
n=1 εn ∑∞

l=−∞ n(n)

il (ξ,η, τ )ei(kx−wt)l,

u = ∑∞
n=1 εn ∑∞

l=−∞ u(n)

l (ξ,η, τ )ei(kx−wt)l,

v = ∑∞
n=1 εn+1 ∑∞

l=−∞ v(n)

l (ξ,η, τ )ei(kx−wt)l,

φ = ∑∞
n=1 εn ∑∞

l=−∞ φ
(n)

l (ξ,η, τ )ei(kx−wt)l,

ne = 1 + ∑∞
n=1 εn ∑∞

l=−∞ n(n)

el (ξ,η, τ )ei(kx−wt)l.

(4)

Substituting Eq. (4) into Eqs. (1) and (3), collecting the terms in different powers of ε , we obtain the following equations at the lower
order of ε:

n(1)
e1 = 4

4 + H2
e k2

φ
(1)
1 , n(1)

i1 = k2

w2
φ

(1)
1 , u(1)

1 = k

w
φ

(1)
1 , v(1)

1 = −i

w

∂φ
(1)
1

∂η
. (5)

For the next order of the ε , we have equation with n = 1, l = 0:

n(1)
e0 = φ

(1)
0 = 0, n(1)

i0 = βφ
(1)
0 = 0, u(1)

0 = cβφ
(1)
0 = 0,

∂v(1)
0

∂ξ
=

k2 ∂|φ(1)
1 |2
∂η + w2 ∂φ

(2)
0

∂η

cw2
. (6)

The dispersion relation w2 = k2(4+H2
e k2)

4β+4k2+k4 H2
e

is also deduced. Therefore, the group velocity c = ∂ w
∂k = 8β(H2

e k2+2)

(k4 H2
e +4k2+4β)

3
2 (H2

e k2+4)
1
2

, which is

the compatibility condition obtained accordingly.
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