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The mixed spin-1/2 and spin-1 Ising chain with both longitude and transverse single-ion anisotropies
Dz and Dx is solved exactly by means of a mapping to the spin-1/2 Ising chain with the alternating
transverse fields and the Jordan–Wigner transformation. The analytical expressions of the quasi-particles’
spectra Λk , the minimal energy gap Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh

for exciting a hole, and the ground state energy are obtained. The phase diagram of the ground state is
also given. The results show that when Dz � 0 for any finite value of Dx, there is no quantum critical
point and the ground state is always in a spin ordered phase disregard of the boundary condition in the
present system.
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1. Introduction

Quantum spin systems have been studied extensively in the
last decades. One-dimensional spin models have been continu-
ously attracting much attention in both theoretical and experimen-
tal condensed-matter physics since they are among the few ex-
actly solvable quantum many-body systems. Heisenberg spin chain
model and the anisotropic extensions of the Heisenberg exchange
were exactly solved by the most powerful method Bethe ansatz
[1–4]. Using fundamental quantum mechanical principles two spin
models can be exactly solved, whose ground state and elementary
excitations are obtained [5,6].

In last two decades, many quasi-one-dimensional mixed-spin
materials [7–10] with each unit cell containing two spins of differ-
ent spin value have been synthesized, such as ACu(pbaOH)(H2O)3 ·
nH2O with pba = 1,3-proplyenebis(oxamato) and A = Mn, Fe, Co,
Mn, Zn and belong to the alternating or mixed spin chain family.
A variety of the theoretical efforts have done for the spin systems
mixed by different kinds of spins by means of different meth-
ods, many theoretical works dealt in two-dimension. But in one
dimension, alternating spin-1/2 and spin-1 chain only solved by
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a variety of methods, such as DMRG methods, spin-wave theory
[11,12], Monte Carlo simulations [13], mean-field theory [14], the
Green’s function approach [15] and so on. Previous studies un-
dertaken within the mixed spin-1/2 and spin-1 chain have only
considered some magnetic properties in the absence of external
magnetic field or anisotropic single-ion field.

In this Letter we study a mixed spin-1/2 and spin-1 Ising
chain with both longitude and transverse single-ion anisotropies.
We show that this model can be solved exactly in principle by
extending the analytical method used in solving the S = 1/2 quan-
tum Ising chain [5]. The central idea of our exact diagonalization
lies in the fact that the total Hilbert space of this mixed spin-1/2
and spin-1 Ising chain can be divided into a number of subspaces
labeled by a conserved quantity, the number of holes. Here, a
hole represents a local state with zero Sz

i of spin-1 at site i. This
idea was motivated from the paper of Oitmaa and Brasch [16],
where they mapped a ferromagnetic spin-1 Ising model with a
transverse single-ion crystal-field term to the usual spin-1/2 trans-
verse Ising model, and the other recent paper of Yang et al. [17],
where they solve the spin-1 quantum Ising model with single-
ion anisotropy by mapping it onto a series of segmented spin-1/2
transverse Ising chains, separated by the Sz

i = 0 states called holes.
Our present study provides a further exactly solvable mixed spin-
1/2 and spin-1 Ising system with both longitude and transverse
single-ion anisotropies.
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The outline of this Letter is as follows. In the next section,
a detailed description of the model system is presented and then,
exact diagonalization of the system will be shown. In Section 3 the
model is solved numerically and the phase diagrams are discussed.
Finally, Section 4 is devoted to brief conclusion.

2. Model and method

2.1. The model Hamiltonian

Let us consider a mixed spin-1/2 and spin-1 Ising chain with
both longitude and transverse single-ion anisotropies. To ensure
exact tractability of the model system, we will further suppose that
the odd sites are occupied by spin-1/2 atoms, and the even sites
are occupied by the spin-1 atoms in the chain. The total Hamilto-
nian of the system reads:

H = − J
∑
〈i, j〉

sz
i Sz

j −
∑

j

[
2Dx

(
Sx

j

)2 + Dz
(

Sz
j

)2]
, (1)

where sz
i and Sα

j (α = x, y, z) denote standard spatial compo-
nents of the spin-1/2 and spin-1 operators, respectively. The first
summation in Eq. (1) is carried out over nearest-neighboring spin
pairs only, while the other two summations run over the sites of
the chain. The last two terms Dz and Dx are the longitude and
transverse single-ion anisotropies acting on the spin-1 atoms, re-
spectively. J stands for the nearest-neighbor exchange interaction
parameter.

At each even site of the chain, the eigenvalue m j of Sz
j can

take three values 0 and ±1. Effectively, one can regard m j = ±1
states as the two polarized spin states of a S = 1/2 spin opera-
tor and m j = 0 state as a hole. It has been recently pointed out
that the ferromagnetic S = 1 Ising lattices can be mapped onto
the S = 1/2 Ising lattices provided the number of holes being
a conserved quantity [16,17]. As did in Ref. [16], by introducing
N̂0 = L

2 − ∑
j(Sz

j)
2 for a periodic boundary chain with the total

number of sites L which is even, we find that [N̂0, H] = 0. This
means that the hole states with m j = 0 are decoupled from the
spin polarized states with m j = ±1. So all the eigenstates of the
model can be classified by the eigenvalue of N̂0, i.e., the total num-
ber of the local states |0 j〉 in the spin chain.

The holes in this system act like nonmagnetic impurities, they
will separate the system into many independent segments of inter-
acting S = 1/2 spins. In a system of p (0 � p � L/2) holes, there
are p + 1 segments of non-hole systems at most. If these holes are
located at (x1, . . . , xp) with 2p = xp � L, it is straightforward to
show that Eq. (1) is exactly equivalent to the following Hamilto-
nian (setting x0 = 0 and xP+1 = L + 1),

H{xi, p} =
p+1∑
n=1

h(ln) + p(Dz − Dx) + E0, (2)

where the dynamic irrelevant constant E0 = − L
2 (Dx + Dz) and

h(ln) = −1

2
J

xn−2∑
j=xn−1+1

σ z
j σ

z
j+1 −

xn−2∑
j=xn−1+1

D jσ
x
j (3)

is the Hamiltonian of the reduced subsystem which is equivalent
to an S = 1/2 Ising chain of length ln = xn − xn−1 − 3 with the
alternating transverse fields [18–20].

By denoting |ψ(ln)〉 the eigenstate of the subsystem h(ln)

with eigenvalue ε(ln), the generic eigenstate of H({xi, p}) is then
given by |Ψp(L)〉 = ∏P

n=1 |ψ(ln)〉 ⊗ |0xn 〉 with eigenvalue E p(L) =∑p
n=1 ε(ln) + p(Dz − Dx).
It is therefore of interest to discuss the Hamiltonian for each

segment, which are essentially equivalent to the S = 1/2 quantum
Ising systems with the alternating transverse fields.

2.2. Exact diagonalization of the system

It appears that the ground state of Eq. (1) always lies in the
sector with N0 = 0, i.e., with no sites in the m j = 0 state when
Dz � 0. Then, for the ground state, there are only two states per
site and we can map the Hamiltonian to a spin-1/2 problem. The
formal relations for the operator �S j of spin-1 are

Sz
j → σ z

j , S+
j S+

j → 2σ+
j , S−

j S−
j → 2σ−

j ,

S+
j S−

j → 1 + σ z
j , S−

j S+
j → 1 − σ z

j ,

where the σ j are Pauli operators. Considering sz
i = 1

2 σ z
i , we map

the Hamiltonian (1) to a spin-1/2 problem

h(L) = −1

2
J

L−1∑
j=1

σ z
j σ

z
j+1 −

L/2∑
j=1

Dxσ
x
2 j, (4a)

where the constant E0 = − L
2 (Dx + Dz) is omitted. Let Ω2 j−1 =

D1 = 0 and Ω2 j = Dx for j = 1,2, . . . , L/2, above Hamiltonian can
be rewritten as follows

h(L) = −1

2
J

L−1∑
j=1

σ z
j σ

z
j+1 −

L∑
j=1

Ω jσ
x
j , (4b)

which is just a spin-1/2 Ising chain with the alternating transverse
fields.

According the Ref. [18], the above Hamiltonian of the spin-1/2
Ising chain with the alternating transverse fields can be exactly
diagonalized, the entire eigenvalue spectrum and eigenfunctions
can be obtained by employing the Jordan–Wigner transformation
of the spin operators to spinless fermions [5]: σ−

j = K jc j , σ+
j =

c+
j K −1

j , where c j and c+
j are the spinless Fermi operators satisfy-

ing the commutation relations: {ci,c
+
j } = δi j , {c+

i , c+
j } = {ci,c j} = 0;

K j are kink operators and are self-conjugate, K −1
j = K +

j , which
are used to impose the bosonic commutation relation. They can be
simply represented as K j = exp[−π i

∑ j−1
l=1 c+

l cl]. The Hamiltonian
(4b) is rewritten as

H =
L∑

i, j=1

[
c+

i Ai jc j + 1

2

(
c+

i Bi jc
+
j − ci Bi jc j

)] + L

2
Dx, (5)

where Aij = −2Ωiδi j − 1
2 Jδi+1, j − 1

2 Jδi−1, j = A ji , Bij = − 1
2 Jδi+1, j +

1
2 Jδi−1, j = −B ji .

Up to this step, the none hole sector is mapped onto the spin-
less fermionic system where each terms in Eq. (5) are bilinear. We
can diagonalize Hamiltonian (5) further by use of the Bogolubov
transformation in the following form

ηk =
L∑

j=1

(
gkjc j + hkjc

+
j

)
, η+

k =
L∑

j=1

(
gkjc

+
j + hkjc j

)
. (6)

Here, k parameterizes the quasi-momentum of the quasi-particle,
determined by boundary conditions. For the periodic boundary
condition kn = 2πn

L , n = − L
2 ,− L

2 + 1, . . . , L
2 − 1. ηk and η+

k are
quasi-particle operators, satisfying the usual fermionic commuta-
tion relations {ηk, η

+
k′ } = δk,k′ .

The real functions gkj and hkj are defined such that the Hamil-
tonian (5) is diagonal in terms of the quasi-particle operators

h(L) =
∑

k

Λk

(
η+

k ηk − 1

2

)
, (7)

where the total number of the allowed values of k in the summa-
tion is L. This leads to the equation of motion {ηk, H} − Λkηk = 0.
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