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In this Letter, we introduce the concept of load entropy, which can be an average measure of a
network’s heterogeneity in the load distribution. Then we investigate the dynamics of load entropy during
failure propagation using a new cascading failures load model, which can represent the node removal
mechanism in many real-life complex systems. Simulation results show that in the early stage of failure
propagation the load entropy for a larger cascading failure increases more sharply than that for a smaller
one, and consequently the cascading failure with a larger damage can be identified at the early stage of
failure propagation according to the load entropy. Particularly, load entropy can be used as an index to
be optimized in cascading failures control and defense in many real-life complex networks.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, it has been shown that many large-scale real complex
networks display a free-scale feature [1,2], such as the Internet,
the power transmission grid, and metabolic networks, etc., with
power-law degree distribution [3,4]: P (k) ∼ k−γ , where k is the
number of links of a randomly chosen node in the network and
γ is the scaling exponent. The work by Albert et al. demonstrated
that scale-free networks possess the robust-yet-fragile property, in
the sense that they are robust against random failures of nodes but
fragile to intentional attacks [5]. Large cascading events observed
in many real large-scale infrastructure networks just prove Albert’s
conclusion. For instance, on 10 August 1996 when a 1300-mW
electrical line in southern Oregon sagged in the summer heat, a
chain reaction that cut power to more than 4 million people in 11
Western States is initiated [6,7]. In October 1986 during the first
documented Internet congestion collapse, the speed of the connec-
tion between the Lawrence Berkeley Laboratory and the University
of California at Berkeley dropped by a factor 100 [8,9].

Because of the ubiquity of scale-free networks, as well as the
increasing catastrophes with severe long-term consequences sur-
rounding us, induced by cascading failures, the security of scale-
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free networks, i.e., how failures or attacks affect the integrity and
operation of the networks has been of great interest [10–22]. In
the previous research, the cascade events are extensively studied
by using two kinds of models, one is the cascading failures load
model [10–13,18,19,23,24] and another is the susceptible-infected-
recovered (SIR) model [20–22]. In Ref. [10], a simple mechanism
was proposed to incorporate the dynamics of load in both random
and scale-free networks, by introducing a cascading model based
on the intrinsic flows of physical quantities in the network. By
using the load model, Ref. [11] investigated a phase-transition phe-
nomenon in terms of the key parameter characterizing the node
capacity. Based on the previous work, Lai et al. derived an up-
per bound for the capacity parameter, above which the network
is immune to cascading breakdown [12]. A model and mechanism
for overload breakdown in growing networks has been consid-
ered by Holme and Kim [13], in which these authors focused on
overloads caused by the growth of the network. The cascading
failures in scale-free coupling map lattices have been studied by
Wang et al. [14,15]. More recently, Wu et al. discussed the dynam-
ics of cascading failures in urban traffic networks, from the edge
overloading to the malfunctioning of node [16,17]. In Refs. [20,
21], epidemic spreading in scale-free networks is investigated by
proposing a modified susceptible-infected-recovered (SIR) model,
and a conclusion is drawn that the density of the recovered indi-
viduals shows a threshold behavior. By using a SIR model, rumor
propagation in complex networks is studied analytically and nu-
merically, with emphasis on the relationship between the network
topological structure and the number of the total final infected
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nodes [22]. The pioneering work on cascade control and defense
has made many significant achievements [23], which suggest that
an intentional removal of network elements right after the initial
attack can drastically reduce the size of the cascade.

Many studies show that the heterogeneity in the load dis-
tribution makes the system vulnerable to cascading failures [23,
24]. However, to our knowledge no research focused on how to
quantify the heterogeneity of node loads. Inspired by the work of
Wang et al., who introduced the entropy of the degree distribu-
tion in scale-free networks [25], we propose the concept of load
entropy to characterize a network’s heterogeneity in the load dis-
tribution and develop a new cascading failures load model, which
can represent the overloaded node removal mechanism common to
many real-life complex systems, and then investigate the dynam-
ical evolving properties of load entropy during the failure propa-
gation. Numerical simulations show the relationship between the
dynamics of load entropy and the damage size of cascading fail-
ures, by which large cascades can be recognized at the early stage
of failure propagation.

2. A new cascading failure load model representing the real
overloaded nodes removal mechanism

We assume that the time scale for cascading failures is much
smaller than the time scale in which the network grows, and hence
the growth of network is not considered in the study of cascading
failures.

In many realistic situations the flow of physical quantities in
the network, as characterized by the loads on nodes, is important.
For a given network, suppose that at each time step one unit of
a physical quantity (so-called a packet), which can be information,
energy, etc., is exchanged between every pair of nodes and trans-
mitted along the shortest path connecting them. The load Li(t)
on node i at time t is the total number of shortest paths pass-
ing through i. If there is more than one shortest path connecting
two nodes, the packet is divided evenly at each branching point.
Each node is characterized by a capacity defined as the maximum
load that node can handle. In man-made networks, the capacity is
severely limited by cost. Following Ref. [10] we assume the capac-
ity Ci of node i to be proportional to its initial load Li(0):

Ci = (1 + α)Li(0), i = 1,2, . . . , N, (1)

where the constant α � 0 is the tolerance parameter and N is the
number of nodes.

The initial removal of a node, in general, changes the distri-
bution of shortest paths. The load at a particular node can then
change. If it increases and exceeds the capacity, the correspond-
ing node is prone to malfunction. As a result, a new redistribution
of loads occurs, and thus may lead to a new round of nodes fail-
ure. This step-by-step process is so-called a cascading failure. If
a relatively important node is attacked, the cascading failures can
propagate and shutdown a considerable fraction of the whole net-
work [10].

We consider that in most real-life complex networks a certain
quantity of instantaneous node overload is permissible and the
node malfunction is mainly caused by the accumulative effect of
overload. For instance, in traffic transmission networks, the tempo-
rary congestion of a crossing, which results from a small occasional
incident and can be solved soon, usually has no distinct effect on
the normal operation of the whole network. The same case can
also be observed in the Internet. At the same time, there exists
a certain monitoring and control in many large-scale infrastruc-
ture networks. Once the node overload is detected, some effective
measures are taken within the response time to decrease the ca-
pacity constraint violation and even make the node load less than
its capacity. However, in the most previous cascading failures mod-

Fig. 1. The removal probability P (L) of node i, which load L lasts for time T .

els, the simple and unreasonable strategy of immediate removal
of an instantaneously overloaded node is widely adopted, with-
out considering the real-life overloaded node removal mechanism
described above. Therefore, we introduce a new strategy of the
overloaded node removal to reflect many real-life complex net-
works.

It is assumed that the removal probability P (L) of a node,
which load L lasts for a period of time T , is shown in Fig. 1 and
the probability density of P (L) obeys uniform distribution in the
interval [0, T ]. The parameter T has some relation to the response
time of the complex systems. The parameter ρ(ρ > 1), shown in
Fig. 1, may be different for various networks and in the simula-
tions we choose ρ = 1.5. At each time t , the following iterative
rule is adopted:

pi(t) =
{

pi(t − 1) + P (Li(t))/T if Li(t) > Ci,

0 if Li(t) � Ci,
i = 1, . . . , N, (2)

where pi(t) is the removal probability of node i at time t, Li(t) is
the load of node i at time t and P (Li(t)) can be obtained from
Fig. 1.

In this way, after an initial removal of a node caused by an
attack, at each time the loads of all nodes are calculated and
then the nodes which will be removed from the network are de-
termined by comparing a random β ∈ (0,1) and the malfunction
probability derived by Eq. (2). When the loads of all nodes are not
larger than their corresponding capacity, a cascading failure stops.
The damage caused by a cascade is quantified in terms of the rel-
ative size G of the largest connected component

G = N ′/N, (3)

where N and N ′ are the numbers of nodes in the largest compo-
nent before and after the cascade respectively.

3. Dynamics of load entropy during cascading failure
propagation

A simple but essential reason for the vulnerability of scale-free
networks to cascading failures is its heterogeneous load distribu-
tion. Heterogeneity can be measured by entropy [26,27]. The load
level of node i at time t is expressed as

Ri(t) = Li(t)

Ci
. (4)

In order to generate the load entropy, M successive intervals
are defined as [0, u), [u,2 ∗ u), . . . , [(M − 1) ∗ u, M ∗ u) and it is
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