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Abstract

The phase diagrams and compensation behaviors of mixed spin-1/2 and spin-1 Blume—Capel model in a trimodal magnetic field are investigated
in the framework of the effective field theory on simple cubic lattice. The change of negative crystal field and trimodal concentration can affect
the TCP, the second-order phase and the magnetic field degeneration at ground state in 7—H space. In T—D space, the trajectory of the TCP takes
on the acre curve and there exist the two TCPs under certain condition. In addition to giving one or two compensation temperature points in M—T
space, the mixed spin Blume—Capel model also provides one or two novel compensation magnetic field points in M—H space. Some results are

not revealed in previous works.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The phase diagrams and compensation behaviors of the
mixed spin Ising model have been a subject of extensive inves-
tigation for a long time. The different mixed spin Ising models
are treated by using various techniques, such as mean-field ap-
proximation [1,2], effective field theory with correlations [3,4],
renormalization group [5,6], Monte Carlo simulation [7-10],
a precise numerical solution [11-13] and so on. Some studies
indicate that the mixed spin BCM in the absence or presence
of the magnetic field can show a number of important critical
behaviors, such as reentrant phenomenon and tricritical point
[14-18]. We need to mention here that the phase diagrams of
the mixed spin system under a unique magnetic field condition
are not given. However, the phase diagrams can be obtained if
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the magnetic field satisfies a bimodal or trimodal distribution.
Key problem lies on the presence of magnetic field symmet-
ric disorder distribution and not on the exact form of disorder
distribution. Recently, Benayad et al. have discussed the ther-
modynamical properties of trimodal magnetic field mixed spin
transverse Ising model [19].

Another appealing problem is ferrimagnetic properties of the
mixed spin Ising model. It is known that, in a ferrimagnet, there
is one or multi-compensation temperature points at which the
resultant magnetization vanishes below its Curie temperature
[20-23]. It is important to have the compensation temperature
points, because of the high coercivity around the points. From
the material science point of view, such an investigation may be
helpful for the thermomagnetic recording and magneto-optical
readout applications [24]. In fact, some experimental studies
have shown the stability of one or two compensation tempera-
ture points [25-27]. More recently, one of the present authors
has given magnetizations and compensation behaviors of the
bond and crystal field dilution mixed spin Blume—Capel model
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(BCM) in a magnetic field [28]. In that work, the author defined
primarily a new compensation magnetic field Hx and found
one magnetic compensation point at which the resultant mag-
netization vanishes below its saturation magnetic field.

In this work, we consider the phase diagrams and compen-
sation behaviors of the mixed spin-1/2 and spin-1 BCM in a
trimodal magnetic field. The calculated results show that the
change of negative crystal field and trimodal concentration can
affect the TCP, the second-order phase and the magnetic field
degeneration at ground state in T—H space. In T—D space, the
trajectory of the TCP takes on the acre curve and there exist
the two TCPs. On the other hand, in addition to giving one
or two compensation temperature points in M—T space, the
present system also provides one or two novel compensation
magnetic field points in M—H space. To our knowledge, some
results have not been revealed in previous works. Here we em-
ploy an effective field theory (EFT) and a cutting approximation
to discuss these problems.

2. Theory

For a mixed spin Blume—Capel model in a trimodal external
field, the Hamiltonian is given by

H=-7Y 0i$i=DY ()’ =Y Hioi = > H;Si. (1)
(@) j i j

The underlying lattice is composed of two interpenetrating
sublattices A and B. One is occupied by spin-1/2 with spin
moment o at site 7, while other one is occupied by spin-1 with
spin moment Sj at site j. The first summation is carried out
only all the nearest-neighbor pairs of spins. The second sum-
mation extends over all sites of sublattice B. The third and
the fourth summations involve all sites of sublattices A and B.
Here J defines the exchange interaction between the nearest-
neighbour sites. D is the parameter of the crystal field, assumed
to be negative. H, (¢ =i or j) represents the longitudinal
magnetic field acting on the sublattices A and B and satisfies
trimodal probability distribution.

P(Hy) = p8(Ha) + %(1 — P)[8(Ho + H) + 8(Hy — H)],
2

where p indicates the trimodal magnetic field concentration in
sublattice A and B. Within the EFT, the averaged magnetiza-
tions in sublattices A and B are given by

o= ((af)) = <lﬁ [(S;)2 cosh(JV)

+ S3sinh(J'V) +1— (S§)2]>F(x)|x=0’ ©

m=((83)) = <ﬁ|:cosh(%JV)

i=1

+20f sinh(%JV>:|>G(x)|x:0, €]

while the quadrupolar moment is given by
2 - 1
o= (571~ {[T[son(57)
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+20] sinh(%JV>}>H(x)|x=o, (5)

where V = 0/dx is a differential operator, (---) indicates the
canonical thermal average. The functions F'(x), G(x) and H (x)
are defined by

F(x)=/P(Hi)f(x,Hi)dHi, ©)
G(x):/P(Hj)g(x,Hj)dH~, )
Hx) = / P(H)h(x, H))dH]. ®)
while
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If we try to treat exactly the multispins correlation presented

in Egs. (3)—(5), the problem is mathematically intractable.
A cutting approximation is usually adopted

g(x, Hj) (10)

h(x, Hj) =

(1)

(o0} - o)~ {oi)lof) (o). (12)
(7(55)7 - SE) = SN -+ (). (13)
fori # j #---# k. Then Egs. (3)—(5) may be rewritten as

o =[gqcosh(JV) +msinh(JV) +1— g F(x)lz=0.  (14)
m= [cosh(%JV) + 20 sinh(%JV>:| G(x)|x=0, (15)
q= [cosh(%]V) + 20 sinh(%]V)} H(x)|x=0- (16)

If we expand the right-hand side of Eqgs. (14)—(16) and com-
bine them, the self-consistent equation of the magnetization o
in sublattice A is given by

o =aoc +bo>+co’--, (17)

where
a = 2z*Ly(sinh(JV))[ Q1(cosh(J V))
+1- 017 F®@)limo, (18)
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