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Landauer’s principle and non-equilibrium statistical ensembles
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Abstract

Landauer’s principle is fundamental for the physics of information. It establishes the least amount of energy that needs to be dissipated in order
to erase a bit of information. Using the Beck–Cohen representation of statistical ensemble distributions, we explore an extension of Landauer’s
principle to systems out of equilibrium.
© 2007 Elsevier B.V. All rights reserved.
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A few years ago, Beck and Cohen (BC) advanced an inter-
esting treatment of non-equilibrium, meta-stable states [1–7]. In
this approach statistical ensemble distributions are represented
as a superposition of Gibbs distributions that are characterized
by different temperatures. It is hence also referred to as “super-
statistics” and it appears to be particularly successful in dealing
with various physical settings, most notably turbulence [8–11].
In the present Letter we use the BC formalism to discuss a
fundamental aspect of the physics of information: Landauer’s
principle.

The physics of information [12–20] has been receiving in-
creasing attention [21–27]. There is a growing consensus that
information is endowed with physical reality, not in the least
because the ultimate limits of any real device that processes or
transmits information are determined by the fundamental laws
of physics [21–24,28,29]. At the same token a plenitude of the-
oretical developments rendered the concept of information an
essential ingredient for a deep understanding of physical sys-
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tems and processes [13–17,21]. Landauer’s principle is one of
the most basic results in the physics of information [19] and
constituted a historical turning point in the field by directly
connecting information processing with (more) conventional
physical quantities [30]. Above all, it allowed for exorcising
Maxwell’s demon [21]. According to Landauer’s principle a
minimal amount of energy is required to be dissipated in order
to erase a bit of information in a computing device working at
temperature T . This minimum energy is given by kT ln 2, when
k denotes Boltzmann’s constant [31–33]. Landauer’s principle
has profound implications as it allows for novel, physically mo-
tivated derivations of several important results in classical and
quantum information theory [34]. In addition, it comprises a
quite useful heuristic tool for establishing new links between,
or obtaining new derivations of, fundamental aspects of ther-
modynamics and other areas of physics [35].

Most derivations of Landauer’s principle can be considered
semi-phenomenological since they are readily based on the
second principle of thermodynamics. Alternative derivations,
which build on dynamical principles, assume that the systems
under study are in thermal equilibrium and can thus be de-
scribed in terms of Gibb’s canonical distributions. In view of the
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fundamental character of Landauer’s principle, however, it is
highly desirable to explore more general formulations applica-
ble to non-equilibrium settings involving non-Gibbs ensemble
distributions. Information processing can be realized in vari-
ous physical settings. Indeed, one of the main ideas behind the
physics of information and computation is that every physical
system (even the whole universe) can be construed as an infor-
mation processing system. Consequently, it is of considerable
interest to extend the fundamental principles of the physics of
information to out of equilibrium situations. This more general
case may encompass compelling examples of physical real-
izations of information processes such as, for instance, those
related to biology. Biological systems process information at
molecular, cellular, and higher levels [36] within an essen-
tially no-equilibrium setting. Indeed, information processing is
clearly at the very foundations of biology and has been appro-
priately characterized as the “touchstone of life” [36]. Due to
the extremely low concentrations of some important molecules
involved in the aforementioned biological processes, stochas-
tic fluctuations akin to the temperature fluctuations associated
with the BC formalism play a fundamental role in biologi-
cal scenarios [37] (the possible application of non-equilibrium
metastable states described by non-Gibbsian ensembles to bio-
chemical systems has been recently suggested in [38]).

As part of the program of exploring some basic aspects of
the physics of information within non-equilibrium scenarios,
we here extend Landauer’s principle to systems out of equilib-
rium described by the BC formalism. We consider this partic-
ular problem a natural starting point because the BC approach,
while useful for describing various non-equilibrium problems,
still is to a large extent based upon the Gibbs canonical formal-
ism.

We adopt the conventional picture for an erasure process
[32] and assume that the composite system’s Hamiltonian has
the form H = H(s) + H(b) + H(i). Here H(s) denotes the
Hamiltonian of the storage device for a bit of information.
More specifically, H(s) describes a (classical) particle with
mass m moving in a one-dimensional, symmetric double well
potential V centered at origin. The left and right wells cor-
respond to the 0 and 1 states of the stored bit, respectively
(see Fig. 1). H(b) represents the Hamiltonian of a surround-
ing heat bath. Further, we incorporate a finite interaction term
H(i), describing the interplay between the bit-storing device
and the heat bath. This interaction term, however, is always
considered much smaller than both H(s) and H(b). In gen-
eral, H(s) and H(i) are time-dependent Hamiltonians. In par-
ticular, the shape of the aforementioned potential function V

changes during the erasure process. Importantly, however, the
Hamiltonians do not differ before and after erasure. That is, the
shape of the potential function before erasure, V (. . . ; t = 0),
matches the form after erasure has been completed. Prior to
erasure the composite system is described by the ensemble
distribution F̃initial = F̃initial(x

(s),x(b)), where x(s) and x(b)

summarize the complete sets of canonical variables of the
storage device s and the heat bath b, respectively. After era-
sure the composite system is given by the final distribution
F̃final = F̃final(x

(s),x(b)). The corresponding marginal distrib-

Fig. 1. Illustration of the erasure principle. In the initial state (left panel) both
wells are equally filled, that is, there is an equal probability for the bit to be
in the ‘zero’ or ‘one’ state. After erasure, in contrasts, well ‘one’ is empty and
the distribution, i.e., all probability is concentrated in well ‘zero’ and the bit is
re-set to state ‘zero’ (right panel); see text for further details.

utions read F̃
(s)
initial/final = F̃

(s)
initial/final(x

(s)) = ∫
F̃initial/final dΩ(b)

and F̃
(b)
initial/final = F̃

(b)
initial/final(x

(b)) = ∫
F̃initial/final dΩ(s). The

erasure process starts with an initial distribution that is asso-
ciated with thermal equilibrium at temperature T = (kβ)−1,
given by the Gibbs canonical distribution:

(1)F̃initial
(
x(s),x(b);β) = e−βHinitial

Z(β)

with Hinitial denoting the system’s total Hamiltonian at the ini-
tial time. Z(β) is the accompanying partition function of the
composite system given by

(2)Z(β) =
∫

e−βHinitial dΩ.

To describe the bit-storing potential V , we denote the canonical
variables as x(s) = {q,p} and the corresponding volume ele-
ment as dΩ(s) = dq dp. Then, the initial marginal distribution
for the device reads

(3)F̃
(s)
initial = e−βp2/2m

Z(s)(β)
e−βV (q;t=0) for |q| < ∞,

with

(4)Z(s)(β) =
+∞∫

−∞

+∞∫
−∞

e−βp2/2me−βV (q;t=0) dq dp.

After erasure, the composite system, i.e., storage device plus
heat bath, has evolved into a new state whose final distribution
F̃final = F̃final(x

(s),x(b);β) yields a marginal distribution of the
storage device in the form of, e.g.,

(5)F̃
(s)
final =

{
2F̃

(s)
initial for − ∞ < q < 0,

0 otherwise.

The double well potential V (q, t) and the projections of the
probability distributions (1) and (3) onto the configuration
space (q) are depicted in Fig. 1—notice that Fig. 1 represents
the conventional model for the erasure of a bit of information in
a memory storage device. The inverse temperature β describing
the initial distribution can be seen as a parameter that charac-
terizes a family of different realizations of the erasure process
F̃initial(x

(s),x(b);β) → F̃final(x
(s),x(b);β). Each realization is

associated with a particular time-dependent solution of Liou-
ville’s equation, ∂F

∂t
= [F,H ]. Notice, however, that the total
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