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Abstract

It is well known that one of key features of spiral waves in complex-oscillatory media is the appearance of synchronization defect lines, across
which the phase of the oscillation changes by multiplies of 2. In this Letter, we report the appearance of synchronization defect lines in target
waves in complex-oscillatory media by studying a model of two-dimensional Rossler reaction—diffusion system subject to an appropriate periodic
force in a small region of the center of domain. The geometric structure and stability of the defect lines are studied.
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Target waves (TWs) and spiral waves (SWs) are the two
most commonly observed patterns in nature [1]. They appear
in a large variety of spatio-temporal systems, such as chemical
reaction—diffusion systems [2], dictyostelium discoideum sys-
tems [3], heart muscle systems [4], and so on. These two types
of patterns have drawn a great deal of attention and have been
extensively investigated in both excitable and oscillatory media.
In oscillatory media, generic features of spiral wave dynamics
are usually described in terms of the complex Ginzburg—Landau
equation (CGLE), which is a normal form in the vicinity of
a Hopf bifurcation to an oscillatory state in spatially extended
systems. Recent studies found SWs can even exist in complex-
oscillatory media where the local dynamics exhibits complex-
oscillatory or even chaotic behavior [5-10]. In such parameter
regimes, a novel phenomenon appears, which is characterized
by a synchronization defect line (SDL) across which the phase
of the oscillation changes by multiplies of 2. Very recently,
Sandstede and Scheel [11] investigated period doubled spiral
waves and line defects in considerable mathematical detail.
SDLs have also been well observed in experiments mainly in
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the Belousov—Zhabotinsky (BZ) reaction under oscillatory con-
ditions [12—15]. For recent review article on this subject, see
Ref. [16]. On the other hand, TWs have also attracted much at-
tention. For example, Hendrey et al. [17] observed two types
of TW patterns (stationary and breathing) by introducing a
spatially localized inhomogeneity into the CGLE, an effective
method for controlling spiral turbulence by producing a TW
was considered [18,19], Stich et al. [20] analyzed the properties
of target patterns in heterogeneous oscillatory systems created
by the pacemaker, and, very recently, Gao and Zhan [21] stud-
ied the possibility of producing a stable target wave by simply
setting a constant system variable in a small spatial region,
i.e., the so-called system variable block method. To the best
knowledge of the authors, in contrast to the well-known SWs in
complex-oscillatory media, TW patterns in complex-oscillatory
media, however, have never been studied or documented in the
literature. In particular, some relevant problems remain unclear,
such as how to produce complex-oscillatory TWs, is it possible
to generate SDLs in space, and what are the essential features
of SDLs. In this Letter we will address these issues by investi-
gating a model of two-dimensional Rossler reaction—diffusion
system and focus on some unusual features of synchronization
defect lines of TWs in complex-oscillatory media, such as the
geometrical structure and dynamical stability.
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Consider the reaction—diffusion system

ae(r, t)
ot

where c¢(r,t) is a vector of time-dependent concentrations at
point r in the two-dimensional domain of a square L x L or
a disk with radius R. Without loss of generality, L = 128 and
R = 62.5 are considered in the Letter. Larger L and R were also
tested and we found that they do not change the qualitative re-
sults. The diffusion coefficient D for all three species are taken
to be the same: D = 0.1. No-flux boundary conditions are con-
sidered. In numerics, the explicit Euler method was employed
by setting the space and time steps: Ax = 0.5 and Ar = 0.01.
R[e(r, 1)] describes the local reaction kinetics and in the Let-
ter is specified by the Rossler model: Ry = —cy — ¢z, Ry =
¢x +0.2¢y, and R, = cxc; — Cc; + 0.2. We will change para-
meter C within (2.0, 6.0). As C is increased, the single Rossler
oscillator undergoes a period-doubling route to chaos; the first
two period-doubling bifurcations take place at C ~ 2.83 and
C ~ 3.86 for the transitions from P1 to P2 and from P2 to P4,
respectively. For the appearance of SWs in complex oscillatory
media, studies have demonstrated that there are slightly small
parameter lags and the two corresponding bifurcations in pat-
terns take place at C >~ 3.07 and C =~ 4.075, respectively [5-7].

For spiral waves in P1 media (or the so-called simple spiral
wave), the phase field ¢ (r, t) contains a topological defect point
in the spiral core such that the integral of the phase field gradi-
ent taken along any contour encircling the core takes a nonzero
value,

=R[e(r,n)] + DVZe(r, 1), 1)
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The integer o is the topological charge of the defect and o # 0.
For spiral waves in complex-oscillatory media (or the so-called
complex-oscillatory spiral), this restriction in the above equa-
tion (o # 0) persists. In such complex-oscillatory parameter
regimes, synchronization defect lines spontaneously appear,
which separate domains of different oscillation phases and
across which the phase changes by multiples of 2. The under-
lying mechanism now is clear [5] and such SDLs are believed
to arise from the need to reconcile the rotation period of a
one-armed spiral wave with the oscillation period of the local
dynamics. In simple model studies, SDLs appear as stationary
and a slightly curved line, which connects central core region
and boundary. Recently, Zhan and Kapral [10] well proposed
a theoretical model to reconstruct the geometrical structure of
such SDLs. In chemical BZ reactions, however, the structures of
SDLs can be much rich. In particular, Park and Lee [13] found
stationary SDLs can show spiral shapes and the tip of SDLs
in the core region may even execute a meandering motion like
that seen in excitable media. If three-dimensional effects are
considered, much richer and complicated dynamics of SDLs
are possible [15]. In sharp contrast to the spiral waves, target
waves radiate concentric circular waves and are devoid of any
defect point (o = 0). This restriction may persist for complex-
oscillatory TWs and give rise to some novel phenomena, as we
will see below.

Similar to the approach to producing TWs in CGLE used in
Ref. [18], we apply an external periodic signal to a fixed small
area at the center of the domain, i.e., we add to the right-hand of
Eq. (1) the term I"§; 8}, sin(wt), where i and j are the inte-
ger numbers corresponding to whole discretized x and y spatial
variables, whereas  and v are the integer numbers correspond-
ing to the stimulus region. I" and w are the driving strength
and driving frequency, respectively. Note that this driving force
is added to all three Rossler variable terms. The small con-
trolled area is taken to be a disk with radius r = 7.5. Compared
with the radius R (R = 62.5) of the whole domain, this size
is very small, but this force might dramatically change the sys-
tem behavior under certain conditions. We have well studied the
conditions for the appearance of target waves by choosing an
appropriate diving strength I (I" = 0.2) and searching a wide
range of the values of w. When the stimulus frequency is lower
than about 3, i.e., w < 3, TWs can be produced. We also found
that the values of parameter C for the establishment of TWs are
the same as those for SWs presented earlier, namely, C >~ 3.07
and C =~ 4.075 corresponding to the transitions from P1 to P2
and from P2 to P4, respectively.

The appearance of SDLs heavily relies on the choice of the
external periodic signals (namely, the values of I" and w), and
the stimulus frequency @ may play a more significant role,
compared with I". We found that under the P2 oscillatory con-
dition, if the stimulus frequency is near one or two times of
the bulk oscillatory frequency w, >~ 0.534, SDLs can be easily
observed; in the P4 oscillatory media, the range of the stimu-
lus frequency that is capable of generating SDLs is larger, and
the w should be around integer time (1, 2, 3, or 4) of the P4 os-
cillatory frequency w, >~ 0.267. In the following discussion, the
stimulus frequency is chosen to be fixed @ = 1.068. An interest-
ing finding is that initial conditions may also play an important
role; for example, homogeneous initial conditions usually can-
not produce SDLs, but random initial conditions that lead to
inhomogeneous phases can.

Next we pay our attention to the geometrical structure of
SDLs in complex-oscillatory TWs. As C € [3.07, 4.075] within
the P2 regime, under suitable setting of internal periodic signals
and random conditions, fine and stationary SDLs can be ob-
served. As shown in Fig. 1, the SDLs in the patterns of TWs
in the square and disks are visible. C = 3.5, I' = 0.2, and
w = 1.068. They appear as a clamp structure, constructed by
two straight lines, whose free ends are pinned to the boundaries,
and one small bending part, which connects the two straight
lines. In the left panel of the figure, we show the target patterns
by the value of the ¢, (r, t) concentration field at one time in-
stant. In the right panel of the figure, we illustrate the spatial
structure of SDLs for the corresponding target pattern by cal-
culating the scalar fields Acy (r,1). Ac,(r,t) = %for lex(r,t +
') —cx(r,t + 1 +1)|dt’, for T = T /2, where T is the period
of the period-2 target wave (7' = 11.76). c(r,t) =c(r,t +T/2)
for the P1 points on the line defect, while this relation does
not apply for other spatial points with P2 dynamics. Thus, this
time-average method can be easily implemented to locate the
line defects in the media [13], and has already been extensively
used in the studies of complex-oscillatory SWs.



Download English Version:

https://daneshyari.com/en/article/1866208

Download Persian Version:

https://daneshyari.com/article/1866208

Daneshyari.com


https://daneshyari.com/en/article/1866208
https://daneshyari.com/article/1866208
https://daneshyari.com/

