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Abstract

Analytic solution for unsteady magnetohydrodynamic (MHD) flow is constructed in a rotating non-Newtonian fluid through a porous medium.
Constitutive equations for a Maxwell fluid have been taken into consideration. The hydromagnetic flow in the uniformly rotating fluid is generated
by a suddenly moved infinite plate in its own plane. Analytic solution of the governing flow problem is obtained by means of the Fourier sine
transform. It is shown that the obtained solution satisfies both the associate partial differential equation and the initial and boundary conditions.
The solution for a Navier—Stokes fluid is recovered if A — 0. The steady state solution is also obtained for t — oo.
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1. Introduction

It has generally been recognized that in technological appli-
cations non-Newtonian fluids are more appropriate than New-
tonian fluids. This is perhaps due to their demands in bio-
rheology, geophysics, chemical and petroleum industries [1].
Because of the difficulty to suggest a single model which ex-
hibits all properties of non-Newtonian fluids, they cannot be
described as simply as Newtonian fluids. Due to this fact many
models of constitutive equations have been proposed and most
of them are empirical or semiempirical [2]. Amongst these the
differential type fluid model gained considerable attention of
many researchers. However on the otherhand there are much
controversies on these models as well. Such fluids are also in-
adequate to describe the relaxation phenomena. For a complete
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and detailed discussion of the relevant issues for differential
type fluids, we refer the readers to Dunn and Rajagopal [3] and
Aksel [4].

There is a subclass of the rate type fluids namely the
Maxwell fluids in which the relaxation phenomena can be taken
into account. Specifically the Maxwell fluid model has been
used for the viscoelastic flows where the dimensionless re-
laxation time is small. However in some more concentrated
polymeric fluids the Maxwell model is also useful for large
dimensionless relaxation time. Some recent investigations deal-
ing with the flows of Maxwell fluids are given in the refer-
ences [5-10].

All the above investigations of hydrodynamic fluids are,
however, confined to flows of Maxwell fluids in the non-porous
medium and a non-rotating frame. In the present Letter our con-
cern is to analyze the MHD rotating flow of a Maxwell fluid in
a porous medium. The flow is caused by a suddenly jerked plate
in its own plane. Fourier sine transform is employed to obtain
the analytic solution. The obtained solution is valid for all times
starting from the initial steady state (+ = 0) to the final steady
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state (f — 00). The results have been compared with those of
Singh and Sathi [11]. Finally, graphs of velocity are sketched
and discussed.

2. Formulation of the problem

Let us consider an infinite non-conducting rigid plate (lo-
cated at z = 0) and the incompressible Maxwell fluid (which
is in contact with the plate) are in uniform rotation with angu-
lar velocity € = 2k (k is a unit vector parallel to the z-axis).
The fluid occupies the porous medium z > 0. Moreover, the
fluid is electrically conducting in the presence of an applied
magnetic field By = (0, 0, Bp). The magnetic Reynolds num-
ber is assumed small and hence the induced magnetic field is
neglected. The Lorentz force J x Bg under these conditions is
equal to —o B(%V. Here J is the current density, o is the elec-
trical conductivity of fluid and V is the velocity field. Referred
to a rotating frame of reference, the flow in a porous medium is
governed by the following equations:
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in which p is the fluid density, r is a radial vector with P2 =
x2 4 y2, p is the pressure and R is the Darcy’s resistance. The
extra stress tensor S for a Maxwell fluid satisfies
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where L = grad V, u is the dynamic viscosity, A is the relax-
ation time and A is the first Rivlin—Ericken tensor defined by

A =L+LT, )

According to Tan and Masuoka [12], the Darcy’s resistance
in an Oldroyd-B fluid satisfies the following expression
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where A, is the retardation time, ¢ is the porosity and k is the
permeability of the porous medium. For Maxwell fluid A, =0
and hence
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We seek a velocity field of the form
V= (u(z,1),v(z, 1), w(z, 1)) ()

which together with Eq. (1) yields w = 0. Therefore using
Egs. (2)-(4) and (7) we arrive at
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and the modified pressure p is
~ 4
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In Egs. (8) and (9) R, and Ry are the x- and y-components
of the Darcy’s resistance R and z-component of Eq. (2) indi-
cates that p # p(z). Invoking Egs. (6), (10) and (11) in Egs. (8)
and (9) and then neglecting the pressure gradient we get
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The appropriate initial and boundary conditions are

u=v=0 at r=0, z>0,

u(0,1) = Uy, v(0,t) =0 forr >0, (14)
d 0

u, —u, v,—v—>0 as z— o0, t>0. (15)
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Defining

F=u+iv, (16)

Egs. (12) and (13) can be combined as
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where v is the kinematic viscosity. This equation, for Maxwell
fluid, is one order higher in ¢ than the corresponding equation
for a Newtonian or second grade fluid. Consequently, in order to
obtain unique solution for such a fluid, an additional initial con-
dition is necessary. For a detail discussion about this problem
and for some simple examples we refer the reader to [13,14].
Following Srivastava [15], we shall assume that the time deriv-
ative of velocity vanishes at time t =0 [16,17]. As a result, the
appropriate initial and boundary conditions are

, z,t>0, a7
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