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Nonlocal electrodynamics of accelerated systems
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Abstract

Acceleration-induced nonlocality is discussed and a simple field theory of nonlocal electrodynamics is developed. The theory involves a pair of
real parameters that are to be determined from observation. The implications of this theory for the phenomenon of helicity-rotation coupling are
briefly examined.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the measurement of a basic radiation field ψ by
an accelerated observer in Minkowski spacetime. According
to the hypothesis of locality [1], the observer, at each event
along its worldline, is locally equivalent to an otherwise iden-
tical momentarily comoving inertial observer. The frame of
this hypothetical inertial observer is related to the background
global inertial frame via a Poincaré transformation; therefore,
the field measured by the momentarily comoving observer is
ψ̂(τ ) = Λ(τ)ψ(τ), where τ is the observer’s proper time at the
event under consideration and Λ(τ) is a matrix representation
of the Lorentz group.

Let Ψ̂ be the field that is actually measured by the acceler-
ated observer. The hypothesis of locality requires that Ψ̂ (τ ) =
ψ̂(τ ). However, the most general linear relation between Ψ̂ (τ )

and ψ̂(τ ) consistent with causality is [2]

(1)Ψ̂ (τ ) = ψ̂(τ ) +
τ∫

τ0

K(τ, τ ′)ψ̂(τ ′)dτ ′,

where τ0 is the initial instant at which the observer’s acceler-
ation is turned on. The manifestly Lorentz-invariant ansatz (1)
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involves a kernel that must be proportional to the acceleration
of the observer. The kernel is determined from the postulate that
a basic radiation field can never stand completely still with re-
spect to an accelerated observer. This is simply a generalization
of the standard result for inertial observers. A detailed analy-
sis reveals that the only physically acceptable kernel consistent
with this physical requirement is [3–6]

(2)K(τ, τ ′) = k(τ ′) = −dΛ(τ ′)
dτ ′ Λ−1(τ ′).

Using this kernel, Eq. (1) may be written as

(3)Ψ̂ (τ ) = ψ̂(τ0) −
τ∫

τ0

Λ(τ ′)dψ(τ ′)
dτ ′ dτ ′.

An immediate consequence of this relation is that if the acceler-
ated observer passes through a spacetime region where the field
ψ is constant, then the accelerated observer measures a constant
field as well, since Ψ̂ (τ ) = ψ̂(τ0). This is the main property of
kernel (2) and it will be used in the following section to argue
that in nonlocal electrodynamics, Eq. (2) is only appropriate for
the electromagnetic potential.

The basic notions that underlie this nonlocal theory of ac-
celerated observers appear to be consistent with the quantum
theory [7–9]. Indeed, such an agreement has been the main
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goal of the nonlocal extension of the standard relativity the-
ory of accelerated systems [10,11]. Moreover, the observational
consequences of the theory are consistent with experimental
data available at present. On the other hand, our treatment of
nonlocal electrodynamics has thus far emphasized only radia-
tion fields. However, a nonlocal field theory of electrodynamics
must also deal with special situations such as electrostatics and
magnetostatics. Furthermore, the application of our nonlocal
theory to electrodynamics encounters an essential ambiguity:
should the basic field ψ be identified with the vector poten-
tial Aμ or the Faraday tensor Fμν? In our previous treatments
[10,12], this ambiguity was left unresolved, since for the is-
sues at hand either approach seemed to work. Nevertheless
our measurement-theoretic approach to acceleration-induced
nonlocality could be more clearly stated in terms of the di-
rectly measurable and gauge-invariant Faraday tensor, which
was therefore preferred [10,12].

The main purpose of the present work is to resolve this basic
ambiguity in favor of the vector potential. The physical reasons
for this choice are discussed in the following section. Section 3
is then devoted to the determination of the appropriate kernel
for the nonlocal Faraday tensor. Section 4 deals with the conse-
quences of this approach for the phenomenon of spin-rotation
coupling for photons. The results are briefly discussed in Sec-
tion 5.

2. Resolution of the ambiguity

It is a consequence of the hypothesis of locality that an accel-
erated observer carries an orthonormal tetrad λμ

(α). The man-
ner in which this local frame is transported along the worldline
reveals the acceleration of the observer; that is,

(4)
dλμ

(α)

dτ
= φα

βλμ
(β),

where φαβ = −φβα is the antisymmetric acceleration tensor.
Let us now consider the determination of an electromagnetic

field, with vector potential Aμ and Faraday tensor Fμν ,

(5)Fμν = ∂μAν − ∂νAμ,

by the accelerated observer. The measurements of the momen-
tarily comoving inertial observers along the worldline are given
by

(6)Âα = Aμλμ
(α), F̂αβ = Fμνλ

μ
(α)λ

ν
(β).

Thus according to our basic ansatz [2], the fields as measured
by the accelerated observer are

(7)Âα(τ ) = Âα(τ ) +
τ∫

τ0

Kα
β(τ, τ ′)Âβ(τ ′)dτ ′,

(8)F̂αβ(τ ) = F̂αβ(τ ) +
τ∫

τ0

Kαβ
γ δ(τ, τ ′)F̂γ δ(τ

′)dτ ′.

Though these relations may be reminiscent of the phenomeno-
logical memory-dependent electrodynamics of certain continu-
ous media [13], they do in fact represent field determinations in

vacuum and are consistent—in the case of kernels (9) and (11)
specified below—with the averaging viewpoint developed by
Bohr and Rosenfeld [14].

It remains to determine the kernels in Eqs. (7) and (8).
Specifically, which one should be identified with the result
given in Eq. (2)? The aim of the following considerations is
the construction of the simplest tenable nonlocal electrodynam-
ics; however, there is a lack of definitive experimental results
that could guide such a development. We must therefore bear in
mind the possibility that future experimental data may require
a revision of the theory presented in this Letter.

Let us recall here the main property of kernel (2) noted in
the previous section: a uniformly moving observer enters a re-
gion of constant field ψ ; the observer is then accelerated, but
it continues to measure the same constant field. Now imagine
such an observer in an extended region of constant electric and
magnetic fields; we intuitively expect that as the velocity of the
observer varies, the electromagnetic field measured by the ob-
server would in general vary as well. This expectation appears
to be provisionally consistent with the result of Kennard’s ex-
periment [15,16]. It follows that the kernel in Eq. (8) cannot
be of the form given in Eq. (2). On the other hand, in a region
of constant vector potential Aμ, the gauge-dependent potential
measured by an arbitrary accelerated observer could be con-
stant; in fact, in this region the gauge-invariant electromagnetic
field vanishes for all observers by Eqs. (5), (6) and (8). There-
fore, we assume that the kernel in Eq. (7) is of the form given
by Eq. (2), so that

(9)Kα
β(τ, τ ′) = kα

β(τ ′),

which can be expressed via Eqs. (2) and (4) as

(10)kα
β = −φα

β.

The determination of the field kernel in Eq. (8) is the subject of
the next section.

3. Field kernel

The first step in the determination of the kernel in Eq. (8) is
to require that

(11)Kαβ
γ δ(τ, τ ′) = kαβ

γ δ(τ ′).

This simplifying assumption is rather advantageous [4–6]. If the
acceleration of the observer is turned off at τ = τf , then the new
kernel vanishes for τ > τf . In this case, the nonlocal contribu-
tion to Eq. (8) is a constant memory of the past acceleration
of the observer that is in principle measurable. This constant
memory is simply canceled in a measuring device whenever
the device is reset.

Next, we assume that kαβ
γ δ is linearly dependent upon the

acceleration tensor φαβ . Clearly, the basic notions of the nonlo-
cal theory cannot a priori exclude terms in the kernel that would
be nonlinear in the acceleration of the observer. Therefore, our
linearity assumption must be regarded as preliminary and con-
tingent upon agreement with observation.
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