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Abstract

In this Letter, an incompressible lattice Boltzmann model without compressible effect for simulating flow field and a new lattice Boltzmann
model for correctly solving the Poisson–Boltzmann equation are introduced. The proposed models can be used to eliminate some unexpected
errors in lattice Boltzmann method that has been applied to simulate electro-osmotic flow in microchannel. Transient behavior of electro-osmotic
transport and effects due to the variations of the ionic concentration, channel height, external electric field and zeta (ζ ) potential on the velocity
profile were investigated with present models. Detailed numerical results are in good agreement with the corresponding analytical solutions or
numerical results in existing literature.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Electro-osmotic flow (EOF) is created when an electric field
is applied through a liquid-filled microchannel where an elec-
trical double layer (EDL) is formed due to the interaction be-
tween an electrolyte solution and a solid surface [1]. Due to the
important applications of this type of flow in various biomed-
ical lab-on-a-chip devices to transport and manipulate liquids
for different purposes, such as sample injection, chemical re-
actions, and species separation, EOF in microchannels has re-
ceived increasing attention in recent years [1,2].

Historically, many studies have been carried out on electro-
osmotic flow in microchannels. Burgreen and Nakache [3]
established a mathematical model in ultrafine capillary slits.
Later, the same problem was studied by Rice and Whitehead
[4] in narrow cylindrical capillary. Qu and Li [5] also formu-
lated a mathematical model for overlapped EDL fields. Due
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to the constraints of the experimental conditions and the theo-
retical analysis, many numerical methods were developed for
simulating electro-osmotic flow in microchannel in the past
several years. Patankar and Hu [6] developed a numerical
scheme to simulate the electro-osmotic flow in the intersec-
tion of channel. Bianchi et al. [7] developed a finite element
formulation for simulating electro-osmotic flow in microscale
channel networks. Mitchell et al. [8] simulated electro-osmotic
flow in three typically encountered geometries with finite cloud
method. Jin and Luo [9] also simulated the electro-osmotic
flow at the cross region in microfluidic chips and compared
their simulated results with the experimental images. Tan and
Ng [10] studied 3D developing flow in microchannel with nu-
merical method. Zhao and Liao [11] studied thermal effects on
electro-osmotic pumping of liquids in microchannels with finite
difference method. Xuan et al. [12] investigated thermal end ef-
fects on electro-osmotic flow in a capillary using finite element
method.

As reported by Fan and Harrison [13], the duration of electro-
osmotic injection affects the separation efficiency. Therefore,
investigation of transient behavior can provide more insights
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into the characters of electro-osmotic flow and is also impor-
tant for the Biochip operation [15]. A theoretical framework
for describing the transient phenomena was built by Söder-
man and Jönsson [14], and then further developed by many
researchers [15–17]. However, the encountered geometries an-
alyzed with analytical theory are very simple, and there are
many difficulties for researchers to extend the analytical theory
to the complex geometries. To address this problem, the nu-
merical analysis may be used as an alternative tool to analyze
the transient phenomena in complex geometries. For example,
Qiao and Aluru [18] have applied a reduced-order modelling
approach to analyze the transient behavior of electro-osmotic
flow in four different geometries.

In addition, many factors, including the ionic concentration
of the electrolyte, channel height, ζ potential and external elec-
tric field, may have important impacts on the velocity profile.
The relations between them are studied in detail in the present
work.

In the past decades, several approaches were developed for
simulating EOF in microchannels, including finite element [7],
finite difference [19], molecular dynamics (MD) [20] and so
on. However, there are many difficulties in simulating such phe-
nomena with the methods mentioned above due to the presence
of an electric double layer [21].

As a new mesoscopic numerical approach, the lattice Boltz-
mann method (LBM), has received more and more attention
in simulating complex fluid flows and transport phenomena
based on kinetic theory and statistic physics. Because of its dis-
tinctive advantages over conventional numerical methods, the
LBM has achieved great success in a variety of fields since
its emergence [22–24]. Furthermore, many efforts have been
made to apply the LBM to simulate electrokinetic phenomena
[21,25–29]. However, two problems arise when existing lat-
tice Boltzmann models are applied to simulate electrokinetic
phenomena. Firstly, as the compressible schemes is applied
to simulate incompressible fluid flows, the compressible effect
might lead to some undesirable errors in numerical simulations
[30]. Secondly, the existing models applied to solve Poisson–
Boltzmann equation provide approximate solutions by solving
steady diffusion equation, this is because the term ∂/∂t exists
in their final recovered equation [25,28,29]. Therefore, some
unexpected errors may be induced by this term in numerical
experiments.

To address the problems listed above, an incompressible
lattice Boltzmann model without compressible effect and a
new lattice Boltzmann model for correctly solving Poisson–
Boltzmann equation are proposed in this Letter. Subsequently,
transient behavior of electro-osmotic transport and the effects
of the variations of the ionic concentration, channel height, ex-
ternal electric field and ζ potential on the velocity profile are
studied in detail with proposed models.

The rest of the Letter is organized as follows. In following
section, the macroscopic governing equations for EOF are in-
troduced. In Section 3, the lattice Boltzmann models for solving
macroscopic governing equations are proposed. Numerical ex-
periments are performed in Section 4, and finally, a brief sum-
mary and conclusion are presented in Section 5.

2. Macroscopic hydrodynamic equations for EOF

The general equations for governing EOF are incompres-
sible Navier–Stokes equations, including continuity equation
and momentum equation adapted electrical external force

(1a)∇ · u = 0,

(1b)ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + μ∇2u + ρeE,

where u is the velocity vector, ρ is the density of solution, P

is the pressure, μ is the dynamic viscosity of the flow, ρe is the
net charge density, and E is the external electric field.

In the incompressible limit, the change of the density can be
neglected, Eq. (1) reduce to following equation

(2a)∇ · u = 0,

(2b)
∂u
∂t

+ u · ∇u = −∇P ′ + ν∇2u + G,

where P ′ = P/ρ, G = ρeE/ρ is the acceleration due to external
force, ν is kinetic viscosity.

As the sample is usually a dilute solution, the same proper-
ties are assumed in the whole bulk solution in microchannel.
The physical parameters such as the viscosity are assumed to
be equal to the solvent characteristics. According to the EDL
theory [31], the induced electric potential of ions satisfies the
Poisson equation

(3)∇2ψ = − ρe

εε0
,

where ψ is the electrical potential, ρe is the net charge density, ε
and ε0 are the dimensionless dielectric constant and permittivity
of vacuum, respectively.

For the flows over a non-conducting stationary surface, the
ion distribution can be well approximated by the Boltzmann
distribution [31],

ni = ni∞ exp

(
− zie

kbT
ψ

)
,

where ni is the ionic number concentration of ith species, zi is
the valence of type-i ions, n∞ is the ionic number concentra-
tion in the bulk solution, e is the fundamental electric charge,
kb is the Boltzmann constant, and T is the temperature. For a
symmetric electrolyte (zi = z and ni∞ = n∞) considered in the
present work, the net charge density can be defined as

(4)ρe = −2n∞ze sinh

(
zie

kbT
ψ

)
.

Substituting Eq. (4) into Eq. (3) leads to the following Poisson–
Boltzmann equation

(5)∇2ψ = 2n∞ze

εε0
sinh

(
ze

kbT
ψ

)
.

If the term zie
kbT

ψ is small enough (for example, |ψ | < 25 mV),
sinh(

zie
kbT

ψ) ≈ zie
kbT

ψ [21], which is known as Debye–Hückel
approximation. With the aid of this approximation, Eq. (5) can
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