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Abstract

This Letter presents a new hyper-chaotic system, which was obtained by adding a nonlinear quadratic controller to the second equation of
the three-dimensional autonomous modified Lorenz chaotic system. The resulting hyper-chaotic system undergoes a change from hyper-chaos to
limit cycle with some of its parameters changed. The phenomena were demonstrated by numerical simulations, bifurcation analysis and electronic
circuit realization. The experiment results of the hyper-chaotic circuit were well agreed with the simulation results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Hyper-chaos has been studied within many contexts such as
Colpitts oscillator [1], nonlinear circuits [2], communication [3]
and synchronization [4]. Hyper-chaotic Chua’s circuit [5] and
Rössler system [6] are two well-known examples. Due to its
great potential in technological applications [7], the generation
of hyper-chaos by circuits has become a focal research topic
recently [2,8].

Hyper-chaos was first reported by Rössler in 1979. Since
then, some other hyper-chaos has also been found [5,8,9]. Gen-
erating a hyper-chaotic attractor, in particular purposefully de-
signing a hyper-chaotic system from an originally chaotic but
non-hyper-chaotic system with some simple feedback control
techniques, is a theoretically very attractive and yet techni-
cally quite challenging task. Li et al. designed a hyper-chaos
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through adding a state-feedback controller to the first control
input to drive a unified chaotic system to generate hyper-chaos,
and it was demonstrated by bifurcation analysis and an elec-
tronic circuit implementation [10,11]. Murali et al. presented
the methodology of generating simple hyper-chaos circuits with
a stable and an unstable oscillator, which was demonstrated by
means of different simple hyperchaotic circuits with core RC
sinusoidal oscillator and diode as the single nonlinear element
[13].

This Letter presents a new hyper-chaotic system, which is
generated by driving the Lorenz system [12] with a quadratic
term controller. The generated hyper-chaotic system is not only
demonstrated by numerical simulations but also verified with
careful bifurcation analysis. Moreover, it is implemented via an
electronic circuit and tested experimentally in laboratory, show-
ing very good agreement with the simulation results.

The Letter is organized as follows. In Section 2, the hyper-
chaos is introduced. In Section 3, several simulations are carried
out to give a clear observation on the new chaotic attractor. In
Section 4, some bifurcation analyses about the hyper-chaos are
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given. Section 5 introduces the implementation of the hyper-
chaotic system via an electronic circuit. Finally, some conclud-
ing remarks and conclusions are given.

2. Generating hyper-chaos via a dynamical nonlinear
controller

Consider the Lorenz chaotic system [12]

(1)

⎧⎨
⎩

ẋ = 10(y − x),

ẏ = 28x − xz + y,

ż = xy − 8
3z.

The corresponding chaotic attractor is depicted in Fig. 1(a)–(b),
which has a single positive Lyapunov exponent, λ1 = 1.069,
while the others are λ2 = 0 and λ3 = −12.73, respectively.
More detailed complex dynamics of the Lorenz system can be
seen in Ref. [12].

We know that, in order to obtain hyper-chaos, two important
requisites are as follows:

(1) The minimal dimension of the phase space that embeds
a hyper-chaotic attractor should be at least four, which
requires the minimum number of coupled first-order au-
tonomous ordinary differential equations to be four.

(2) The number of terms in the coupled equations giving rise
to instability should be at least two, of which at least one
should have a nonlinear function [6].

By introducing a simple quadratic dynamic feedback control
term w to the second equation of system (1), the following four-
dimensional dynamic system is obtained

(2)

⎧⎪⎪⎨
⎪⎪⎩

ẋ = 10(y − x),

ẏ = 28x + y − xz − w,

ż = xy − 8
3z,

ẇ = kyz,

where k is a constant, determining the chaotic attractor and bi-
furcations of system (2). Obviously, the chaotic system (2) is a
four-dimensional dynamical system, which has four Lyapunov
exponents. This may lead to a hyper-chaotic system. Obviously,

the Jacobian matrix of (2) is

(3)

⎛
⎜⎝

−10 10 0 0
28 − z 1 −x −1

y x − 8
3 0

0 kz ky 0

⎞
⎟⎠ .

Its eigenvalues at origin are λ1 = −2.667, λ2 = 13.11, λ3 =
−22.11 and λ4 = 0.

3. Observation of new chaotic attractors

In system (2), when parameter k varies, several simulations
have been carried out, the outcome of chaotic attractors and
period-doubling bifurcations are summarized as follows:

(1) When k = 0.1, the hyper-chaos strange attractors are shown
in Fig. 2(a) and (b), the attractor is still bounded at this time.

(2) When k = 0.2, the corresponding strange attractors are
shown in Fig. 2(c) and (d).

(3) When k = 0.22, system enters into periodic orbits, the por-
traits of states are shown in Fig. 2(e) and (f).

(4) When k = 0.26, the periodic states are shown in Fig. 2(g)
and (h). Obviously, they are different from those when k =
0.22.

(5) When k = 0.30, the periodic states are shown in Fig. 2(i)
and (j). Obviously, they are also different from those in the
above situations.

(6) When k = 0.4, the corresponding chaos strange attractors
are shown in Fig. 2(k) and (l).

(7) When k = 0.6, the periodic states are shown in Fig. 2(m)
and (n).

It can be seen from the simulation results that the system un-
dergoes hyper-chaos, chaos, and some different periodic orbits
when the parameter k varies.

4. Bifurcation analysis

There does not seem to be any systematic methodology for
purposefully designing a hyper-chaotic system to date. There-
fore, the following investigation relies on a combination of

(a) (b)

Fig. 1. Phase portraits of chaotic system (1): (a) x–z plane, (b) x–y plane.
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