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Spin resonance conditions for intrinsic and induced electric dipole moments
of a spin-1 particle
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Abstract

We show that spin resonance caused by the tensor polarizability of a spin-1 particle rotating in a storage ring designed to measure the intrinsic
electric dipole moment (EDM) is canceled on the average over time when conditions for the spin resonance caused by this EDM are precisely
met. This solves the problem of a false EDM signal created by polarizability.
© 2006 Elsevier B.V. All rights reserved.

PACS: 21.10.-k; 29.20.Dh; 13.40.Em

Keywords: Electric dipole moment; Polarizability; Nuclei; Resonance

1. Introduction

Competing designs for using storage rings to measure (in fact, to discover) electric dipole moments (EDM) of nuclei have
recently been published [1–4]. If a nucleus spin s > 1/2, then, in addition to intrinsic magnetic and electric dipole moments, such
a nucleus may possess an intrinsic quadrupole moment and induced magnetic and electric dipole moments. The induced electric
dipole moment is caused by electric polarizability; its energy in the fields of the above mentioned designs can be much bigger
than the energy of the assumed intrinsic EDM. The corresponding induced EDM can imitate an intrinsic EDM [5]. The immediate
question arises whether the false signal produced by a big induced EDM can put a serious physical limit on the accuracy of the
proposed measurements. The calculations presented in this Letter show that the false signal caused by a big induced EDM is
canceled, on the average over time, under ideal experimental conditions. The reason is that the conditions for observing the intrinsic
EDM and the induced EDM in the same storage ring are mutually incompatible. Here, we analyze these conditions in the case of
the “resonance method” of EDM measurement in storage rings [3,4], where the frequency of the rest-frame electric field equals
the frequency of spin rotations in the magnetic field. The presence of an intrinsic or induced EDM can be revealed by the same
resonance frequency; however, different phases between spin and rest-frame electric field are needed to observe them optimally.
Something similar can be said for the case of the non-resonant (“frozen spin”) method [1,2], where a specially designed radial
electric field cancels spin rotations in the magnetic field.

2. The intrinsic EDM

In classical field theory (see [6], for example) the electric dipole moment of a system of charges, observed at large distances
relative to the system’s size, is defined as �d = ∑

qi�ri , where qi is the charge and �ri the radius vector of the i-particle. Following
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Landau and Lifshitz, the origin of the coordinate system is placed “anywhere within the system of charges” [6]. If the system is
located in an external electric field, �E, which slowly changes across the system, then the potential energy of the system is expanded
into multipole energies, H ≡ ∑

qiφ(ri) = Qφ0 + �d(∇φ)0 + · · ·, where Q = ∑
qi , the total charge of the system; φ0 is the “value

of the potential at the origin”, that is, anywhere within the system; (∇φ)0 = − �E0, the electric field anywhere within the system;
and �d is the EDM of the full system as defined above.

Turning now to a quantum system like a proton, deuteron or molecule, it is clear that when its intrinsic microscopic EDM
is observed by a macroscopic apparatus, the general expression for the EDM energy, −�d �E, remains unchanged if �E is a slowly
changing classical field. However, now vector �d is not classical. In its rest frame it is oriented along the system’s angular momentum,
which is the system’s spin operator,�s. The three components of �s are three generators of rotation symmetry, so their commutation
rules are the same for any s. As for the (still unknown) magnitude of d ,

(1)d = eh̄

mc
ηs,

where, for deuterons, η = 2 × 10−15 if d = 10−29 ecm.
Since an intrinsic EDM violates time reversal symmetry T and parity P, it can appear only when quantum field interactions

violate those symmetries. In the deuteron case, the intrinsic EDM is assumed to be the sum of the proton and neutron EDMs plus
theEDM from the nuclear forces violating CP (and hence T) symmetries [7]:

(2)dD = dp + dn + dπNN
D .

The Standard Model (in which the P, C and PC symmetries are violated) predicts only very small intrinsic EDMs, for example,
∼10−31 ecm for deuterons. Beyond the Standard Model, particularly in the frame of supersymmetry, the predicted EDM values are
several orders higher. The proposed accuracy of the deuteron intrinsic EDM measurement in a resonance EDM ring is 10−29 ecm
[3,4] and 10−27 ecm in a frozen-spin ring [1,2].

3. The induced EDM

The induced EDM, a well-known physical phenomenon, does not violate P, C, and T symmetries and therefore is not directly
relevant to the experiments proposed in [1–4]. However, as explained above, we need to understand whether the inevitable presence
of the induced EDM limits the accuracy of such experiments. Let us denote the induced EDM by �d ind (reserving �d for the intrinsic
EDM). �d ind is not directed along the particle spin. The components of this vector are proportional to the components of the external
electric field, d ind

k = αklEl , αkl is the polarizability tensor of the system placed in this field. Correspondingly, the induced energy
of this system equals �H = −0.5αklEkEl , αkl = αSδkl + αT (sksl + slsk − 2δkls

2/3); αS and αT correspond to the so-called scalar
and tensor polarizabilities; sk is the k-component of the spin operator, k = 1,2 and 3 corresponding to the longitudinal x, radial y,
and vertical z coordinates in a storage ring. For the deuteron [8], αS ≈ 0.6 fm3, αT ≈ 0.03 fm3. Strictly speaking, these numerical
values are correct provided that the deuteron’s center of mass is not moved by the external electric fields. (Such movement would
decrease the observed values of αS , αT .) This condition is met in an EDM storage ring, because the main rest-frame electric field
is γ [�v × �B], which is directed radially while the particles move longitudinally. A longitudinal electric field of the synchrotron RF
cavities exists, but is small compared with the radial |γ [�v × �B]|. Thus, in our numerical estimates we can use the values given in [8].

Two unavoidable effects of polarizability are cause for concern. One is the shielding of the intrinsic EDM from the external
electric field by the counter-field of the induced d ind

D . As a result of that shielding, the observed value of the intrinsic EDM can
change. Here we note only that electric shielding cannot be a big effect in nuclei since the main forces keeping particles together
are big nuclear, not small Coulomb, forces. The second effect of concern—which is the subject of this Letter—is the appearance of
additional torques applied to the spin, which means a change of the spin equations. The spin equations can be changed only by the
spin-dependent part of the polarizability, that is, only by the term −0.5αT (sksl + slsk)EkEl in the Hamiltonian.

4. The Hamiltonian

In any storage ring designed to measure the intrinsic EDM, the EDM manifests itself in a growth of vertical polarization. Our aim
here is to find how spin-1 moves in the vertical plane. The problem is that this movement is caused not only by the intrinsic EDM
generally described in [9], but also by the induced EDM, d ind. We need to find the correct spin equations for the latter. This will be
achieved in three steps. We will: (a) write the spin part of the Hamiltonian of the Schrödinger equation; (b) get the spin equations
in the Heisenberg picture (thus avoiding the difficulty of solving the Schrödinger equation in the case of resonance in the presence
of polarizability); and (c) calculate the quantum average of these spin equations for an arbitrary initial state of deuterons. Note that
without d ind (and also without the Stern–Gerlach and quadrupole interaction effects, not addressed here), the spin equations are
linear. As a result, they are the same for the quantum spin-vector and classical polarization, and independent of the shape of the
initial deuteron state. The induced d ind makes spin equations non-linear, essentially quantum, and dependent on the initial state.
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