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Abstract

This Letter is concerned with bifurcation and chaos in the logistic delay differential equation with a parameterr. The linear stability of the
logistic equation is investigated by analyzing the associated characteristic transcendental equation. Based on the normal form approach and the
center manifold theory, the formula for determining the direction of Hopf bifurcation and the stability of bifurcation periodic solution in the first
bifurcation values is obtained. By theoretical analysis and numerical simulation, we found a new chaos in the logistic delay differential equation.
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1. Introduction

Stability, bifurcations and chaos, an interesting and compli-
cated nonlinear phenomenon in dynamic systems, has received
increasing interest during the last two decades ([1–14]). The lo-
gistic delay differential equation was advocated as adequately
describing the dynamic of electrochemical intercalation and of
physiological systems, etc. The logistic delay differential equa-
tion has a simple form:

(1)ẋ(t) = −ax(t) + rx(t − τ)
(
1− x(t − τ)

)
,

wherea is a known positive parameter, r is an unknown para-
meter andτ > 0 is a known time delay. Notice that Eq.(1) is
supplemented with an initial condition of the form

x(s) = φ(s), s ∈ [−τ,0].
A series of papers ([7,9,10]) on the application of the logisti-
cal delay differential equations have been published, but only
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few of them can be found on the bifurcation and chaos for the
equation. This Letter is concerned with bifurcation and chaos
in the logistic delay differential equation with a parameterr .
The linear stability of the model is investigated by analyzing
the associated characteristic transcendental equation. Using the
normal form approach and the center manifold theory, we ob-
tain the formula for determining the direction of Hopf bifurca-
tion and the stability of bifurcation periodic solution in the first
bifurcation values. By theoretical analysis and numerical sim-
ulation, we found a new chaos in the logistic delay differential
equation.

This Letter is organized as follows: we perform a linear sta-
bility analysis and the existence of bifurcations of Eq.(1) in
Section2; the formulae for determining bifurcation direction
and stability of the bifurcation periodic solutions of Eq.(1) are
presented in Section3, in Section4, numerical simulations are
carried out.

2. Local stability and existence of bifurcation

In this section, we first consider the local stability of the
logistic delay differential equation(1).

0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2005.10.019

http://www.elsevier.com/locate/pla
mailto:jmh1239@hotmail.com
http://dx.doi.org/10.1016/j.physleta.2005.10.019


222 M. Jiang et al. / Physics Letters A 350 (2006) 221–227

Notice that with the transformationu(t) = x(τ t), we can
rewrite Eq.(1) as the following delay differential equation

(2)u̇(t) = −aτu(t) + rτu(t − 1) − rτu2(t − 1).

The above equation has two equilibriau∗ = 0, 1− a
r
, if r �=

0, otherwise, the equation has only oneu∗ = 0.
After linearization of Eq.(2) at the neighborhood of zero,

one obtains:

(3)u̇(t) = −aτu(t) + rτu(t − 1).

The characteristic equation of Eq.(3) is of the form

(4)D(λ) = λ + aτ − rτe−λ = 0.

Similarly, after linearization of Eq.(2) at the neighborhood of
u∗ = 1− a

r
, r �= 0, one gets:

(5)ẏ(t) = −aτy(t) + (2a − r)τy(t − 1),

wherey(t) = u(t) − u∗, u∗ = 1− a
r
.

The characteristic equation of Eq.(5) is of the form

(6)D(λ) = λ + aτ − (2a − r)τe−λ = 0.

It is obvious that the stability of the equilibriumu∗ = 0, 1−
a
r

depends on the roots of the characteristic equation(4), (6),
respectively.

For convenience, we restate a result.

Lemma 2.1 (Hale[13]). All roots of the characteristic equation
λ + c + be−λ = 0, where c and b are real, have negative real
parts if and only if

(7)c > −1,

(8)c + b > 0,

(9)b <

√
c2 + ξ2,

where ξ is the root of ξ = −c tanξ,0 < ξ < π , if c �= 0 and
ξ = π/2 if c = 0.

Applications ofLemma 2.1to Eq.(4) with c = aτ, b = −rτ

and(6) with c = aτ, b = (r − 2a)τ yield

Theorem 2.2. (1) The equilibrium u∗ = 0 of Eq. (2) is unstable
if r < r0 or r > a, where r0 = − 1

τ

√
a2τ2 + ξ2, here ξ is the

root of ξ = −aτ tanξ, 0 < ξ < π , and local stable if r0 < r <

a; (2) The equilibrium u∗ = 1 − a
r

of Eq. (2) is local stable if
a < r < 2a − r0, and unstable if r < a or r > 2a − r0.

Now we discuss the bifurcation of Eq.(2).

Theorem 2.3. When the parameter r passes through the crit-
ical value r1 = r0 = − 1

τ

√
a2τ2 + ξ2, here ξ is the root of

ξ = −aτ tanξ, 0 < ξ < π , there is a Hopf bifurcation from
the equilibrium u∗ = 0 to a periodic orbit; when the parameter
r passes through the critical value r2 = a, there is a pitch-
fork bifurcation from the equilibrium u∗ = 0 to the equilibrium
u∗ = 1 − a

r
; when the parameter r passes through the critical

value r3 = 2a − r0, there is a Hopf bifurcation from the equilib-
rium u∗ = 1− a

r
to a periodic orbit.

Proof. Suppose Eq.(4) has a pure imaginary solutionλ =
iw0, w0 ∈ R+, for some parameter valuer = r∗. This leads
to the following equation

iw0 + aτ − r∗τe−iw0

(10)= (aτ − r∗τ cosw0) + (w0 + r∗τ sinw0)i = 0,

which can be rewritten as

(11)

{
aτ − r∗τ cosw0 = 0,

w0 + r∗τ sinw0 = 0.

So,

(12)

{
r∗ = ± 1

τ

√
a2τ2 + w2

0,

w0 = −aτ tanw0.

By Theorem 2.2, r∗ = r0 = − 1
τ

√
a2τ2 + w2

0, wherew0 is
the root ofw0 = −aτ tanw0, 0< w0 < π , is the critical values
of r .

The last condition for the occurrence of a Hopf bifurcation
is d[Re(λ)]

dr
|r=r0 �= 0.

In the following, we will show that this condition is also sat-
isfied.

Lettingλ = k(r) + iw(r) and using(4), we have

(13)

{
k + aτ − rτe−k cosw = 0,

w + rτe−k sinw = 0.

Taking the derivation of the both side of Eq.(13)with respect
to r , we obtain

(14)

{
dk
dr

− τe−k cosw + rτe−k cosw dk
dr

+ rτe−k sinw dw
dr

= 0,

dw
dr

+ τe−k sinw − rτe−k sinw dk
dr

+ rτe−k cosw dw
dr

= 0.

Hence, we have

d[Re(λ)]
dr

∣∣∣∣
r=r0

= dk

dr

∣∣∣∣
k=0,w=w0,r=r0

= τ cosw0 + r0τ
2

(1+ r0τ cosw0)2 + (r0τ sinw0)2

(15)

= aτ + r2
0τ2

r0[(1+ r0τ cosw0)2 + (r0τ sinw0)2] �= 0.

This implies that the parameter passes through the critical
value r1 = r0 = − 1

τ

√
a2τ2 + ξ2, whereξ is the root ofξ =

−aτ tanξ, 0 < ξ < π , there is a Hopf bifurcation from the
equilibriumu∗ = 0 to a periodic orbit.

Similarly, we can prove that the parameterr passes through
the critical valuer3 = 2a − r0, there is a Hopf bifurcation from
the equilibriumu∗ = 1− a

r
to a periodic orbit.

Notice thatw = 0 is always a root of Eqs.(4) and (6)if r =
a. So the parameterr passes through the critical valuer2 = a, a
pitchfork bifurcation occurs from the equilibriumu∗ = 0 to the
equilibriumu∗ = 1− a

r
.

This complete the proof. �
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