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Abstract

A tethered surface model is investigated by using the canonical Monte Carlo simulation technique on a torus with an intrinsic curvature. We
find that the model undergoes a first-order phase transition between the smooth phase and the crumpled one.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, it has been growing that the concern with elas-
tic surface models of Helfrich and Polyakov–Kleinert[1–5].
A considerable number of studies have been conducted on the
phase transition between the smooth phase and the crumpled
one over the past two decades[6–36].

Curvature energies play a crucial role in smoothing the sur-
face. According to curvature energies, surface models can be
divided into two classes; one with an extrinsic curvature and
the other with an intrinsic curvature. It is also possible that
both extrinsic and intrinsic curvatures are included in a model
Hamiltonian. Intrinsic curvature is the one that is defined only
by using the metric tensor (first fundamental form) of the sur-
face, and extrinsic curvature is defined by using the extrinsic
curvature tensor (second fundamental form) of the surface[37].
Both of the mean curvatureH and the Gaussian curvatureK
defined by using the extrinsic curvature tensor, are considered
as an extrinsic curvature. However, the Gaussian curvature can
also be considered as an intrinsic curvature, because of the re-
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lation 2K=R, whereR is the scalar curvature defined only by
using the metric tensor.

Intrinsic curvature models were first studied by Baillie et al.
in [38–41]. The shape of surfaces can be strongly influenced
by intrinsic curvatures. Recently several numerical studies have
been made on the phase diagram of the model with intrinsic
curvature[23,24]. It was reported that the model undergoes a
first-order phase transition between the smooth phase and the
crumpled phase on a sphere[23] and on a disk[24]. As a
consequence the phase structure of the model has been partly
clarified: the transition can be seen independent of whether the
surface is compact or non-compact.

However, the model is not yet sufficiently understood. Re-
maining subject to be confirmed is whether the phase transition
and the topology-change arecompatible in the surface model
on compact surfaces. Herecompatible means that both of two
phenomena lead to the same result without depending on which
phenomenon firstly occurs. If we define the surface model on
compact surfaces, it is reasonable to consider the topology-
change of surfaces. In fact, the partition function for the closed
string model of Polyakov includes the summation over topol-
ogy. Moreover, a toroidal vesicle and a genus two vesicle with
two holes can be observed in biological membranes[4].
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Therefore, it is interesting, even in the context of the teth-
ered surfaces, to study whether the first-order transition can be
observed on a torus, as one of the higher genus surfaces. The
phase transition might be seen only on spherical surfaces, if the
phase transition and the topology-change are incompatible.

In this Letter, in order to confirm the compatibility we will
show that a first-order transition can be seen in the model on
a torus with intrinsic curvature and that the phase transition is
identical to that observed in the model on a sphere reported
in [23].

2. Model

A triangulated real torus is obtained by modifying a triangu-
lated rectangular surface of sizeL1 × L2 as shown inFig. 1(a).
Bending the surface and connecting the sides of lengthL1, we
have a cylinder of lengthL1. Then the remaining two-sides of
the cylinder are connected as in the first-step. Thus, we have a
real torus as shown inFig. 1(b), which is topologically iden-
tical to the surface inFig. 1(a) under the periodic boundary
condition. The real torus mentioned above will be used in the
simulations.

The real torus is, therefore, characterized by the ratioL1/L2.
Two kinds of tori are used in the simulations:L1/L2 = 2 and
L1/L2 = 4. Fig. 1(b) is the torus of sizeN = 200 of the first
typeL1/L2 = 2, whereL1 = 20 andL2 = 10. Every vertex has
a coordination numberσ = 6 on the torus.

The Gaussian tethering potentialS1 and the intrinsic curva-
tureS3 are defined by

(1)S1 =
∑
(ij)

(Xi − Xj)
2, S3 = −

∑
i

log(δi/2π),

where
∑

(ij) is the sum over bond(ij) connecting the vertices
Xi andXj , andδi in S3 is the sum of angles of the triangles
meeting at the vertexi, and

∑
i is the sum over verticesi.

The partition function is defined by

(2)Z(α) =
∫ N∏

i=1

dXi exp
[−S(X)

]
, S(X) = S1 + αS3,

where N is the total number of vertices, which is equal to
L1 × L2 as described previously. The expressionS(X) shows
thatS explicitly depends on the variableX. The coefficientα is
a modulus of the intrinsic curvature. The surfaces are allowed
to self-intersect, and the center of each surface is fixed in the
partition functionZ(α) to remove the translational zero-mode.

(a) (b)

Fig. 1. (a) Rectangular surface of sizeL1 ×L2 = 20×10, and (b) the real torus
obtained by connecting the opposite sides of the surface in (a).

We note, as described in[23], that the intrinsic curvature
term S3 = −∑

i log(δi/2π) comes from the integration mea-
sure

∏
i dXiq

α
i [42] in the partition function for the model on

a sphere, whereqi is the co-ordination number of the vertex
i. The termS3 = −∑

i log(δi/2π) becomes minimum when
δi = 2π for all i, and hence it becomes smaller on a smooth
torus than on a crumpled one. It is also exact that the termS3 =∑

i (δi − 2π)2 can be minimized on smooth configurations of
the torus. The reason for using the termS3 = −∑

i log(δi/2π),
as an intrinsic curvature on the torus as in the model on a
sphere[23], is thatS3 is closely related to the previously men-
tioned integration measure.

3. Monte Carlo technique

We use two groups of surfaces classified by the ratioL1/L2
in the simulations as mentioned above. The first is characterized
by L1/L2 = 2 and is composed of surfaces of sizeN = 1800,
N = 3200, N = 5000, andN = 9800. The second is char-
acterized byL1/L2 = 4 and is composed of surfaces of size
N = 1762,N = 3600,N = 6400, andN = 10000.

The variablesX are updated by using the canonical Monte
Carlo technique so thatX′ = X + δX, where the small change
δX is made at random in a small sphere inR3. The radiusδr
of the small sphere is chosen at the start of the simulations to
maintain the rate of acceptancerX for the X-update as 0.4 �
rX � 0.6.

The total number of MCS (Monte Carlo sweeps) after the
thermalization MCS is about 1.5 × 108 in the smooth phase
at the transition point of surfaces ofN � 5000, and about
1.2×108 for the smaller surfaces. Relatively smaller number of
MCS (0.8 × 108–1.5 × 108) is iterated in the crumpled phase,
because if the surfaces become once crumpled they hardly re-
turn smooth. This irreversibility was also seen in the model on
a sphere[23] and in the model on a disk[24].

A random number called Mersenne Twister[43] is used in
the MC simulations. We use two sequences of random numbers;
one for 3-dimensional move of verticesX and the other for the
Metropolis accept/reject in the update ofX.

4. Results

Figs. 2(a) and (b) showS1/N againstα obtained on the
typeL1/L2 = 2 surfaces and on the typeL1/L2 = 4 surfaces,
respectively. We find from these figures that the expected rela-
tion S1/N = 1.5 is satisfied. Scale invariance of the partition
function predicts thatS1/N = 1.5. We expect that this relation
should not be influenced by whether the phase transition is of
first order or not.

The size of surfaces can be reflected in the mean square size
X2 defined by

(3)X2 = 1

N

∑
i

(Xi − X̄)2, X̄ = 1

N

∑
i

Xi.

In fact, it is expected that the surfaces become smooth in the
limit α → ∞ and crumpled in the limitα → 0. In order to see
how large the size of surfaces of the typeL1/L2 = 2 is, we plot
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