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On the propagation of transient acoustic waves in isothermal bubbly liquids
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Abstract

The dynamic propagation of acoustic waves in a half-space filled with a viscous, bubbly liquid is studied under van Wijngaarden’s linear theory.
The exact solution to this problem, which corresponds to the compressible Stokes’ 1st problem for the van Wijngaarden–Eringen equation, is
obtained and analyzed using integral transform methods. Specifically, the following results are obtained: (i) van Wijngaarden’s theory is found to
be ill-suited to describe air bubbles in water; (ii) At start-up, the behavior of the bubbly liquid is similar to that of a class of non-Newtonian fluids
under shear; (iii) Bounds on the pressure field are established; (iv) For large time, the solution exhibits Taylor shock-like (i.e., nonlinear) behavior.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Based in part on the earlier work of Lord Rayleigh[1] and
Foldy [2], van Wijngaarden[3] showed in 1972 that, in the
case of one spatial dimension, the propagation of linear acoustic
waves in isothermal bubbly liquids, wherein the bubbles are of
uniform radius, is described by the PDE
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wherev = (u(x, t),0,0) is the velocity vector and
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Here,R0 (> 0) is the (constant) equilibrium bubble radius;ce

andνe, respectively, denote the effective values of the (isother-
mal) sound speed and kinematic viscosity;νl = µl/ρl denotes
the kinematic viscosity of the liquid phase, where the constants
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ρl andµl (� 0), respectively, denote the density and dynamic
viscosity of the surrounding liquid; the constantp0 (> 0) is the
equilibrium pressure in the liquid/gas mixture; and the constant
β0, whereβ0 ∈ (0,1) is the bubble volume fraction, is neither
very close to zero nor to unity.

In 1985, Caflish et al.[4] extended van Wijngaarden’s theory
to include heat conduction and surface tension effects. Subse-
quently, Eringen[5] rederived the multi-dimensional version of
Eq. (1.1) based on a microcontinuum theory, and considered
the case of plane waves in an unbounded, three-dimensional
domain. In 1994, Saccomandi[6] investigated acoustic accel-
eration waves under the nonlinear version of Eringen’s[5] the-
ory. More recently, Jordan and Feuillade[7] obtained the exact
solution to Eq.(1.1), which they termed the van Wijngaarden–
Eringen (VWE) equation, in the context of the compressible
version of Stokes’ 2nd problem. For a comprehensive listing
(up to 1992) of works on acoustic propagation in bubbly liq-
uids, we note the review paper by Miksis and Ting[8]. Other
recent, in-depth, works in this area include that of Llewellin et
al. [9], in which a constitutive model describing the viscoelastic
(i.e., non-Newtonian) rheology of bubbly liquids/suspensions is
developed, and the papers by Brenner et al.[10] and Karpov et
al. [11].
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It is of interest to note that Hayes and Saccomandi[12]
showed that Eq.(1.1)also governs the propagation of damped,
transverse plane waves in a particular class of viscoelastic
solids. Additionally, it should be noted that the special case of
Eq. (1.1) for which µl = 0 andβ0 � 1 was presented by van
Wijngaarden[13] in 1968 as the PDE governing acoustic waves
in inviscid bubbly liquids. Whitham[14] noted that the invis-
cid version of the VWE arises in the study of plasma waves,
longitudinal waves in elastic bars (see also[15,16]), and in the
linear theory of water waves under the Boussinesq approxima-
tion for long waves. For applications of theR0 → 0 limiting
case, known as Stokes’ equation, see[17] and the references
therein.

To the best of our knowledge, only time-harmonic solutions
of Eq. (1.1) have thus far been obtained. Hence, our aim here
is to examine van Wijngaarden’s theory in the context of a
dynamic, yet still analytically tractable, flow setting. Specifi-
cally, we solve and analyze the compressible version of Stokes’
1st problem[18] involving the (viscous) VWE. We also de-
rive a number of asymptotic results, including recovery of the
(known) inviscid solution. To this end, the present Letter is
arranged as follows. In Section2, the exact solution to the
above-mentioned initial-boundary value problem (IBVP) is ob-
tained using integral transform methods. In Section3, analytical
results are presented including large- and small-t expressions.
In Section4 numerical results are presented and in Section5
conclusions are stated. Lastly, in Section6, the major results
are discussed.

2. Mathematical formulation and solution

2.1. Problem formulation

We begin this study by taking the positivez-axis of a Carte-
sian coordinate system in the upward direction and assuming
that an isothermal, homogeneous, viscous bubbly liquid fills the
half-spacex > 0. Initially, the mixture is in its equilibrium state.
At time t = 0+, the pressure at the boundaryx = 0 suddenly
assumes, and is maintained at, the constant valuepmax (�= 0);
i.e., the boundary condition (BC) for the pressure atx = 0 is
pmaxH(t), whereH(·) denotes the Heaviside unit step func-
tion. We seek to determine the motion of the bubbly liquid at
all points in the half-space for allt > 0.

To this end, we are lead to consider the following IBVP in-
volving the VWE equation expressed in terms of the acoustic
pressurep = ℘ − p0:
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Here,℘ is the thermodynamic pressure, we now requireµl > 0,
and we note that∇ × v is identically zero. Employing the
nondimensional variablesp′ = p/pmax, x′ = x(ce/νe), and

t ′ = t (c2
e/νe), we recast our IBVP in dimensionless form as

(2.3)
∂2p

∂x2
− ∂2p

∂t2
+ ∂3p

∂x2∂t
+ R2 ∂4p

∂x2∂t2
= 0 (x, t > 0),

p(0, t) = H(t), p(∞, t) = 0 (t > 0),

(2.4)p(x,0) = ∂p(x,0)/∂t = 0 (x > 0),

where all primes have been omitted for convenience and the
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2.2. Exact solution using integral transform methods

We will now solve the above IBVP using a dual integral
transform approach (see, e.g., Duffy[19]). Hence, applying first
the spatial sine transform, which reduces Eq.(2.3) to an ODE,
and then using the temporal Laplace transform to solve this
ODE, we obtain the dual transform domain solution
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whereξ ands are the sine and Laplace transform parameters,
respectively,
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and a hat (respectively, bar) superposed over a quantity denotes
the image of that quantity in the sine (respectively, Laplace)
transform domain.

Obtaining first the Laplace inverse of Eq.(2.6) using a ta-
ble of inverses (see, e.g.,[19,20]), multiplying the result by√

2/π sin[ξx], and then integrating with respect toξ from zero
to infinity, we find the exactxt-domain solution to be
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