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Abstract

This Letter considers a geometrical structure on the parameter space of the belief propagation algorithm on Bayesian networks. The statistical
manifold of posterior distributions is introduced, and the expression for the information metric on the manifold is derived. The expression is used
to construct a cost function which can be regarded as a measure of the distance in the parameter space.
 2005 Elsevier B.V. All rights reserved.

PACS: 89.70.+c; 02.50.-r; 02.40.Ky; 02.60.Pn

Keywords: Statistical manifold; Belief propagation algorithm; Bayesian networks

1. Introduction

Bayesian networks are graphical representations of prob-
abilistic dependence among random variables. For a given
Bayesian network, probabilistic inference in the network is to
evaluate the posterior distribution (or belief)P(X = x|E = e),
whereX is a random variable associated with the network,x

is an assignment ofX, and the eventE = e is an observed
evidence. It is known that the exact probabilistic inference
for general Bayesian networks is NP-hard[3], while there ex-
ist efficient inference algorithms for a few special classes of
Bayesian networks. One of the most successful applications of
such algorithms can be found in the field of the error-correcting
codes.

The error-correcting codes are fundamental techniques for
improving the reliability of communication over a noisy trans-
mission channel, and have many applications in various com-
munication and data storage systems. The idea of error correc-
tion is the introduction of redundancy, which makes it possible
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to detect or remove errors in the received information. It is clear
that one can transmit information with an arbitrarily small prob-
ability of error by simply increasing the redundancy to infinity
(or equivalently, by decreasing the transmission rate to zero).
However, it is known that an arbitrarily small probability of er-
ror is achievable with the transmission rate kept finite; in fact,
the channel coding theorem states that it is possible to transmit
information at any rate below channel capacity with a probabil-
ity of error arbitrarily close to zero, where channel capacity is
a real-valued parameter which characterizes the channel[16].
Since the appearance of this theorem, a great deal of research
has been devoted to the problem of designing efficient error-
correcting codes which achieve channel capacity.

Recently, as the most promising solutions to the problem,
the turbo codes were invented in[2], and the low-density parity-
check (LDPC) codes, originally proposed in[4], were rediscov-
ered in[11]. Since these codes have attractive features such as
long length of codes, randomness in encoding and approxima-
tion in decoding, there has been much research based on various
fields such as artificial intelligence[9,12], statistical physics
[7,8] and dynamical systems[15]. So far, it has been shown
experimentally that these codes have excellent performance ap-
proaching channel capacity, while the theoretical understanding
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is still weak. One of the most important clues to the understand-
ing would be the fact that the decoding algorithms of these
codes are equivalent to the belief propagation (BP) algorithm
[9,12], which is an exact inference algorithm for Bayesian net-
works with no loops[13]. Although this result is important and
suggestive, it is not guaranteed that the BP algorithm will per-
form valid computation on the networks of these code because
they have loops. Thus the dynamics of the BP algorithm on net-
works with loops has been investigated in order to examine the
connection between performance of the algorithm and structure
of the corresponding networks[18,19].

In studying or designing inference algorithms, it may of-
ten be useful and suggestive to take into account a geometrical
structure of the space of the inference parameters. For instance,
the dynamics of the turbo decoding can be intuitively described
in terms of information geometry, which may lead to an insight
into designing the codes with better performance[6]. Also, in
the field of the statistical learning, it has been reported that the
natural gradient descent, an inference algorithm which takes
advantage of the Riemannian structure on the parameter space
induced by the information metric, shows much better conver-
gence than the conventional inference algorithm (the steepest
gradient descent)[14].

In this Letter, we consider geometry on the space of the infer-
ence parameters of the BP algorithm. For this purpose, we first
introduce the statistical manifold of the posterior distributions
(or beliefs), and derive the expression for the information metric
on the manifold in terms of the inference parameters of the BP
algorithm. By using the expression, we construct a cost function
which can be used as a measure of the distance in the parameter
space. Further, by use of the cost function, we provide an in-
ference algorithm which has a superlinear rate of convergence
in the space of the posterior distributions. See, e.g.,[10] for
general discussions on the rate of convergence of algorithms in
optimization.

2. Probabilistic inference in Bayesian networks

We start by providing a brief introduction to the probabilistic
inference in Bayesian networks. (For details, see, e.g.,[13].)
A Bayesian network is a directed acyclic graph (DAG) which
represents probabilistic dependence among random variables.
More precisely, a Bayesian network is a tripletB = 〈V,E,P 〉
such that

(1) V is a set of random variables:V = {V1, . . . , VN };
(2) 〈V,E〉 is a DAG;
(3) P is a set of conditional probabilities:P = {P(vi |pa(vi))

| Vi ∈ V }, wherevi andpa(vi) denote value assignments
for Vi and parents ofVi , respectively;

(4) The joint distributionP(v1, . . . , vN) is factored according
to structure of the graph〈V,E〉 in the form

(1)P(v1, . . . , vN) =
N∏

i=1

P
(
vi |pa(vi)

)
.

Fig. 1. Simple example of a DAG of 5 nodes and 5 edges.

Fig. 2. Local structure of a graph.

Fig. 1 illustrates a simple example of a DAG. In this case, for
example, the joint probability distributionP(v1, v2, v3, v4, v5)

is written as

P(v1, v2, v3, v4, v5)

(2)= P(v1)P (v2)P (v3|v1)P (v4|v1, v2)P (v5|v3, v4).

Now, let E be a subset ofV , and suppose that the evidence
E = e is observed. The probabilistic inference in a Bayesian
network is then to compute the posterior distribution (or belief)
BELVi

(vi) = P(vi |e) for all Vi /∈ E.
One straightforward approach to computing the belief

BELVi
(vi) is to take the sum of all the possible terms of

P(v1, . . . , vN),

(3)BELVi
(vi) = α

∑
vj /∈{vi ,E}

P(v1, . . . , vN),

whereα is the normalization constant. However, this approach
requires exponential number of operations with respect to the
size of the system (i.e., the number of unobserved random vari-
ables), and so is impractical unless the size is not large.

In order to describe a more practical approach, let us take
the case when a graph has no loops, and turn our considera-
tion to a local structure of the graph, namely, a nodeX /∈ E,
its parentsU = {U1, . . . ,Un} and its childrenY = {Y1, . . . , Ym}
(seeFig. 2). Since the graph has no loops, the path from an evi-
dence nodeE ∈ E to X is uniquely determined, and henceE is
separable asE = {E+

UiX
, . . . ,E−

XYj
, . . .} according to the inter-

section of the path with the neighbouring nodes{U ,Y }. Taking
this separation into account, we now introduce the parameters
πUiX(ui) andλXYj

(x) by writing

(4)πUiX(ui) = P
(
ui

∣∣e+
UiX

)
, λXYj

(x) = P
(
e−
XYj

∣∣x)
,
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