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Abstract

In this Letter, the dynamics of Cohen–Grossberg neural networks model are investigated. The activation functions are only assumed to be
Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended
nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium
of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized.
Our results improve those existing ones.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this Letter, we consider the Cohen–Grossberg neural networks model, which is described by the following differential equa-
tions[1]

(1)
dui(t)

dt
= −ai

(
ui(t)

)[
bi

(
ui(t)

) −
n∑

j=1

wijfj

(
uj (t)

) + Ii

]
, i = 1,2, . . . , n,

wheren � 2 is the number of neurons in the networks,ui(t) denotes the neuron state vector,ai denotes an amplification function,
bi denotes a self-signal function,W = (wij )n×n is the connection matrix,fi denotes an activation function, andIi represents the
constant external input.

Model (1) includes a large number of models from neurobiology and population biology[2]. In particular, it includes as a
special case the popular Hopfield neural networks[3]. Moreover, Cohen–Grossberg neural networks have potential applications in
many areas such as associative memory and optimization. Therefore, the investigation on Cohen–Grossberg neural networks is of
fundamental theoretical and practical significance.

As is well known, stability of neural networks is fundamental for the designs and applications of neural networks[4–16]. In this
Letter, we are devoted to the exponential stability analysis of(1). We only make the following assumptions:

(H1) Eachai is continuous and 0< ὰi � ai(r) � άi for anyr ∈ R.
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(H2) Eachbi is continuous, and there exists a constantλi > 0 such that(r1 − r2)[bi(r1)− bi(r2)] � λi(r1 − r2)
2 for anyr1, r2 ∈ R.

(H3) Eachfi is Lipschitz continuous. Denotemi the minimal Lipschitz constant offi , i.e.,mi = supr1,r2∈R,r1 �=r2

|fi (r1)−fi (r2)||r1−r2| .

Recently, Wang et al.[12], Liao et al.[13] and Lu et al.[14], respectively, analyzed the global exponential stability of(1), but
they additionally required that eachfi be bounded or monotonically increasing. However, in this letter, not only do we abandon the
boundedness condition offi , but also we remove the differentiability and monotonicity restriction fromfi , although this will lead
to more difficulty in stability analysis. In addition, we do not impose any restriction such as symmetry on the connection matrix.

To the best of the authors’ knowledge, the most popular approach to stability analysis of neural networks is based on Lyapunov
direct method (see, for example,[4,7,8,12–16]and references therein). However, no general rule can guide how a Lyapunov function
should be constructed for a given system, and thus the construction of a proper Lyapunov function is usually rather difficult. This
Letter aims to analyze the stability of Cohen–Grossberg neural networks(1) by means of the extended nonlinear measure approach,
and derive a series of new relaxed sufficient conditions for the exponential stability of(1).

2. Preliminaries

Let Rn denote then-dimensional real vector space endowed with vector norm‖·‖. Let 〈·, ·〉 denote the inner product of vectors in
R

n and sign(x) = (sign(x1),sign(x2), . . . ,sign(xn))
T denote the sign vector ofx ∈ R

n, where sign(r) represents the sign function of
r ∈ R. Thel1-norm andl2-norm ofx are defined by‖x‖1 = ∑n

i=1 |xi | and‖x‖2 = (
∑n

i=1 x2
i )1/2 for anyx = (x1, x2, . . . , xn)

T ∈ R
n.

Let Ω be an open subset ofR
n. Consider the following system

(2)
dx(t)

dt
= F

(
x(t)

)
, t � t0,

whereF is a nonlinear operator fromΩ to R
n andx(t) ∈ Ω .

Definition 1. Suppose thatx∗ is an equilibrium point of system(2). System(2) is said to be globally exponentially stable, if there
exist constantsc � 1 andσ > 0 such that‖x(t) − x∗‖ � ce−σ(t−t0)‖x0 − x∗‖ (t � t0), wherex(t) is any solution of(2) initiated
from x0 = x(t0) ∈ R

n.

Definition 2 [11]. Suppose thatΩ is an open subset ofRn, F is an operator fromΩ to R
n, andx0 is any fixed point inΩ . The

constant

(3)MΩ(F) = sup
x,y∈Ω,x �=y

〈F(x) − F(y),sign(x − y)〉
‖x − y‖1

is called the nonlinear measure ofF onΩ . The constant

(4)MΩ

(
F,x0) = sup

x∈Ω,x �=x0

〈F(x) − F(x0),sign(x − x0)〉
‖x − x0‖1

is called the relative nonlinear measure ofF atx0.

Inspired byDefinition 2, we introduce the following extended nonlinear measure concepts ofF in the sense of thel2-norm,
namely:

Definition 3. DenoteΩ,F andx0 the same as inDefinition 2. The constant

(5)mΩ(F) = sup
x,y∈Ω,x �=y

〈F(x) − F(y), x − y〉
‖x − y‖2

2

is called the nonlinear measure ofF onΩ . The constant

(6)mΩ

(
F,x0) = sup

x∈Ω,x �=x0

〈F(x) − F(x0), x − x0〉
‖x − x0‖2

2

is called the relative nonlinear measure ofF atx0.

It is clear thatmΩ(F,x0) � mΩ(F). Now we will show that, the above nonlinear measures induced by thel2-norm have the
following important properties analogous to Lemma 1 and Theorem 2 in[11].

Lemma 1. If mΩ(F) < 0, thenF is a one-to-one mapping onΩ . If in additionΩ = R
n, thenF is a homeomorphism ofRn.
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