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An inhomogeneous random recursive lattice is constructed from the multi-branched Husimi square 
lattice. The number of repeating units connected on one vertex is randomly set to be 2 or 3 with a fixed 
ratio P2 or P3 with P2 + P3 = 1. The lattice is designed to describe complex thermodynamic systems 
with variable coordinating neighbors, e.g. the asymmetric range around the surface of a bulk system. 
Classical ferromagnetic spin-1 Ising model is solved on the lattice to achieve an annealed solution via 
the local exact calculation technique. The model exhibits distinct spontaneous magnetization similar 
to the deterministic system, with however rigorous thermal fluctuations and significant singularities 
on the entropy behavior around the critical temperature, indicating a complex superheating frustration 
in the cross-dimensional range induced by the stochasticity. The critical temperature was found to be 
exponentially correlated to the structural ratio P with the coefficient fitted as 0.53187, while the ground 
state energy presents linear correlation to P , implying a well-defined average property according to the 
structural ratio.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Bethe or Bethe-like recursive lattices generally refer to the 
fractal arrangements of repeating units recursively connected to 
neighbors only on the sharing vertex, with no connection bond lies 
crossing layers. It has become a powerful methodology in various 
fields such as thermodynamics [1,2], graph theory [3], optimiza-
tion problems [4,5] and so on. In statistical physics, one important 
application of the recursive lattice is to approximate the regular 
lattice with the identical coordination number to solve a thermo-
dynamic system (e.g. Ising model) on it. As one of few exactly 
calculable models, it has been proven to be a reliable method [6], 
with the advantage of exact calculation and simple iterative ap-
proach [7], to be applied in numerous physical systems, e.g. al-
loy [8], spin glass [9], polymers [10], biomacromolecule [11] etc.

As a versatile extension of the Bethe lattice assembled by single 
dots and bonds, the Husimi lattice employing simple geographic 
shapes, such as square, triangle, tetrahedron, hexagon, or cube 
[12–14] has also been developed for decades to describe various 
systems with particular geographic properties [15–17]. Similar to 
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the Bethe lattice, the independence feature of units enables the 
exact calculation on Husimi lattice regardless of the dimensions of 
the geographic unit, and mean field approximation is unnecessary 
since the interactions are confined within a unit and not shared 
by others. The calculation method usually relies on the recursive 
approach, which is featured as simple and less computation effort 
costing thanks to the homogeneous self-similar structure [13,18].

Nevertheless, the recursive feature is accompanied with sev-
eral disadvantages of this lattice methodology. Firstly, the repeat-
ing structure implies a homogeneous system, it is only suitable 
to describe systems of uniform texture. Some particular however 
important cases, e.g. the confined geometry or structural transfor-
mation, are enormously difficult, if not impossible, to be simulated 
by the recursive lattices. Therefore, besides a few investigations 
on the thermodynamics on the surface/thin film employed moder-
ately inhomogeneous structure to present the boundary of a bulk 
system [19,20], the reports on the application of recursive lattice 
onto inhomogeneous systems were very rare. Secondly, recursive 
lattice is considered to be a reliable approximation to regular lat-
tice based on the identical coordination number q. Therefore, the 
manipulation of coordination number(s) is critical in constructing 
a recursive lattice for particular requirements. While it is easy to 
draw a regular lattice with an arbitrary q, achieving an odd q in 
recursive lattice usually requires awkward design of unit selec-
tion and branch number, and even worse a prime number of q
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Fig. 1. A demonstration of Husimi lattice with randomly two or three branches joint 
on one vertex.

is impossible. Furthermore, when the randomness is necessary in 
a recursive lattice model, the common method is to add random 
terms in the Hamiltonian, e.g. a random external field as noise 
or random exchange couplings parameter J i j [21,22], while the 
structural randomness is difficult to be presented due to the ho-
mogeneity of recursions.

Therefore, it is expected to be a considerable contribution to 
this field that if new designs of recursive lattice and calculation 
methods are developed to handle the above concerns, and make 
the recursive methodology more versatile in describing inhomoge-
neous systems. Recently we reported an Husimi lattice of random 
square-cube recursion, on which the simple Ising model can be 
solved by conventional exact calculation technique with moder-
ate modification and exhibits well-defined thermal behaviors [23]. 
Following the same principle, in this work we have developed 
a randomly multi-branched Husimi square lattice and solved the 
simple ferromagnetic Ising model on it. The lattice is featured by 
randomly two or three square units connected on one vertex, then 
an inhomogeneous system of variable coordination numbers can 
be achieved with the identical unit cells. The spontaneous magne-
tization with critical temperature TC , thermodynamics around the 
singularity, and the thermal fluctuation caused by stochastic struc-
ture, were investigated with the variation of structural ratio.

2. Modeling and calculation

2.1. Lattice construction

The original Husimi lattice was a tree-like graph assembled by 
squares with two units connecting on one vertex. Since its de-
velopment, derivative structures of three and more squares con-
nection have been also investigated. In this way, to achieve an 
inhomogeneous structure with variable q, it is a natural choice to 
have random number of branches connected in the lattice. To keep 
the investigation simple, in this work we will only study the ran-
domly 2 or 3-branched Husimi square lattice with q = 4 or 6 as 
demonstrated in Fig. 1. A structural ratio P2 or P3 can be defined 
to indicate the probability to have 2 or 3 branches on one ver-
tex, with obviously P2 + P3 = 1. However, as a probable reason 
why this type of lattice has not been reported before, the ran-
dom structure destroys the recursive homogeneity and then makes 
the iterative approach unfeasible, therefore the lattice shown in 
Fig. 1 is not the actual model studied in this paper, and particular 
limitations on the structure must be applied to achieve an exact 
calculation, which will be detailed later.

While the branch number is randomly 2 or 3 in this lattice, 
with the structural ratio P we can define an “analog branch num-
ber” as

analog B = 2 × P2 + 3 × P3, (1)

to present the average branch number of the lattice, and similarly 
an analog coordination number q can also be defined as analog q =

2 × analog B . By this means, the term “cross-dimensional” in this 
paper refers to the gradient of analog q: Taking a finite regular 
cubic lattice with a 2D surface as an example, we have q = 5 on 
the surface and q = 6 in the bulk, then in the near-surface region 
a randomly sampled site will has a probability to be of either q
depending on the depth. Therefore, a gradually variation of analog 
q from 5 to 6 well represents the cross-dimensional range from 
the surface to bulk in this case. Similarly, the case of a 2D layer 
crossing to thin film can be described by the variation of analog q
from 4 to 6. For an additional clarification, both 3-branched Husimi 
square lattice and Husimi cubic lattice have been proved to be a 
good approximation to the regular cubic lattice [13].

The simplest ferromagnetic spin ±1 Ising model was applied on 
the lattice in this paper:

E =
∑

<i, j>

− J i j Si S j, (2)

without external magnetic field H . The weights of one configura-
tion γ of a square unit is given by

w(γ ) = exp(−β

4∑
<i, j>

− J Si S j), (3)

where β is the inverse temperature as 1/kB T , the Boltzmann con-
stant kB is set as one. We have the partition function of the entire 
system as

Z =
∑
�

∏
α

w(γα), (4)

where the � = ⊗
αγα denotes the state of the lattice as an ensem-

ble of unit α.
In this paper we setup a uniform ferromagnetic coupling 

J i j = 1, then the state of system only depends on the structural 
properties. Without external magnetic field, we can expect a half–
half probability of spin state on each site at high temperature, 
a uniform orientation pointing to either up or down of all spins 
at low temperature, and a spontaneous magnetization occurring in 
between. The only question being focused on in this paper is that, 
how this transition behaves in the cross-dimensional situation on 
an inhomogeneous lattice.

2.2. Partial partition function and cavity field

The lattice is designed of infinite size, nevertheless for an iter-
ative approach it is necessary to imagine an original point where 
the entire lattice contribute to. Furthermore, the structure must be 
symmetrical to the original point, and subsequently the symme-
try of sub-trees contributing onto one unit is required, otherwise 
the unique structure of an arbitrary sub-tree is impossible to be 
tracked and accounted in iterative calculation. Therefore, the un-
limited random structure shown in Fig. 1 is not the actual lattice 
we are going to study, and two important principles have to be set-
tled here: 1) the branch number on the vertices of one unit must 
be the same excluding the base vertex; 2) for any arbitrary square 
the three sub-trees contributing onto it towards to the original 
point should be identical. And the branch number on the vertices 
of different levels are random with the structural ratio P . A sample 
structure is presented in the Fig. 2a.

Although these two limitations confine a locally ordered con-
figuration on the same levels and impair the randomness of the 
lattice, from a general view of the infinitely large structure, we 
still have two or three branched vertex randomly appears with a 
fixed probability. Therefore, we may say that this paper discussed 
a special case of the ideally random multi-branched lattice with 
identical sub-trees contributions.
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