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We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits 
a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor 
hopping energy t, and then translates to a trivial band insulator state when t⊥/t > 1. Interestingly, the 
system is found to be a single-edge QVH state with t⊥/t = 1. The topological phase transition also can be 
presented via changing bias voltage and sublattice potential in the system. The QVH states have different 
edge modes carrying valley current but no net charge current. The bias voltage and external electric 
field can be tuned easily in experiments, so the present results will provide potential application in 
valleytronics based on the two-dimensional hexagon lattice.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The two-dimensional hexagon lattice has become one of the 
most important topics in condensed physics and material science
[1–3], since the successful fabrication of graphene [4]. Recently, 
many new materials of graphene family have been synthesized, 
such as silicene, hafnene, germanene and stanene [5–9], which 
have a monolayer hexagon structure, and their energy spectra con-
tain Dirac cones. In field theories, Dirac particles and associated 
gauge fields have been intensively investigated from a topological 
point of view, so electronic properties for the hexagon lattice may 
open new avenues for condensed matter phenomena [10,11]. This 
is a class of materials that possibly hold both topological and su-
perconducting properties. The electronic properties of topological 
insulators (TI) and the two-dimensional hexagon lattice have been 
extensively studied in recent years [12–15], owing to their unusual 
structures and remarkable potential in advanced nanoelectronics 
applications.

For the material of graphene family, the low energy dispersion 
is linear around two valleys at K and K ′ points of the Brillouin 
zone (BZ). The two valleys are degenerate in energy and related 
by the time reversal symmetry [16–20]. The independence and de-
generacy of the valley degree of freedom suggest that it may be 
used to control an electronic device [21], in the same way as elec-
tron spin used in spintronics or quantum computing. The valley 
electronic has become one of hotspots of condensed matter. A very 
important issue in valleytronics is how to generate pure valley cur-
rent, which consists of two identical currents flowing in opposite 
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directions in the two valleys, resembling the pure spin current in 
spintronics. In two-dimensional system, it was proposed that full 
valley filters could be realized in nanojunctions such as wedge-
shaped graphene nanoribbons [22], and graphene junctions [18],
as well as graphene sheet with grain boundaries [23].

In the research of two-dimensional hexagon lattice, bilayer sys-
tems have attracted a lot of attention [24–30]. The various inter-
layer interaction between the nearest neighbor of the two layers 
makes the bilayers possess different properties [31]. The chang-
ing of the interlayer interaction also can shift the position of Dirac 
points. Due to the atoms of a slice of bilayer system composed 
of sp2 hybridization, each layer of the system has a flat hexagon 
structure [32,33]. However, when the sp2/sp3 mixed hybridiza-
tion is employed in the bilayer system, the most stable configu-
ration prefers to occur as low-buckled structure, such as silicene, 
as shown in Fig. 1(b) [7,34]. Compared with monolayer system, the 
extra layer degree of freedom can lead to many new physical phe-
nomenons, and it is also easier to be controlled in experiments
[24–26]. Besides, in terms of topological properties, bilayer is dif-
ferent from single layer. A quintessential example should be cited 
that the bilayer system formed by the combination of two layers 
of quantum spin Hall insulator becomes a trivial band insulator 
(BI) [35], but when a bias voltage is introduced, the bilayer system 
goes over to topologically nontrivial. This indicates that the topo-
logical properties of bilayer are quite different from the single [24].
To obtain more concerning two-dimensional hexagon lattice bi-
layers, by analyzing the changing of Dirac points and topological 
quantum numbers, we investigate the quantum valley Hall (QVH) 
state of two-dimensional hexagon lattice bilayers.

In this paper, we present a study of the QVH state and single-
edge QVH state of the gated two-dimensional hexagon lattice 
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Fig. 1. (a) Schematic of a zigzag edged nanoribbon of hexagon lattice bilayer. (b) Side 
view of the bilayer lattice.

bilayer with various interlayer interaction. By investigating the 
band structure, especially the gap of edge band, Chern number, 
valley Chern number and edge modes, we show that the gated bi-
layer system exhibits a QVH state, single-edge QVH state and BI 
state respectively, depending on the parameter t⊥/t . For a given 
bilayer system with fixed interlayer interaction t⊥ , these topolog-
ical phase transitions from QVH phase to single-edge QVH phase, 
and from single-edge QVH phase to BI can be tuned by chang-
ing bias voltage and sublattice potential. In particular, we find that 
these phase transitions occur without even bulk gap closing, and 
the single-edge QVH is easy to implement valley current without 
any accompany of charge current.

2. The model and method

The tight-binding Hamiltonian of the monolayer hexagon lattice 
including sublattice potential can be written as [36]

H ML S = −t
∑
〈i j〉α

C †
iαC jα − �

∑
iα

μi EzC †
iαCiα, (1)

here C †
iα(Ciα) is a creation (annihilation) operator for an electron 

with spin α on site i. The first term describes the nearest neigh-
bor hopping with hopping energy t . The second term represents a 
staggered sublattice potential with Ez describing the uniform elec-
tric field applied to the sheet, 2� = 0.46 Å describing the space 
between A and B sites, and μi = +1(−1) for the A(B) site. Due to 
the bulked structure, a sublattice potential is induced by an exter-
nal out-of-plan electric field.

The Hamiltonian of AB-stacked bilayer system in the presence 
of sublattice potential and antisymmetric interlayer bias voltage 
can be written as [25,26]

H BL S = H T
ML S + H B

ML S + t⊥
∑

i∈T , j∈B,α

(C †
iαC jα + C †

jαCiα)

+ U
∑

i∈T ,α

C †
iαCiα − U

∑
j∈B,α

C †
jαC jα, (2)

with H T ,B
ML S for the top (T ) and bottom (B) monolayer Hamilto-

nian. Interlayer interaction between the nearest neighbor of the 
two layers is given by the third term with an interaction en-
ergy t⊥ . The interlayer potential difference 2U is given by the 
last two terms. Thus, the spatial inversion symmetry of the two-
dimensional hexagon lattice bilayer is broken by the interlayer 
potential.

Fig. 2. The gap of bulk band and edge band as a function of interlayer interaction t⊥
for bilayer hexagon lattice with (a) zigzag and (b) armchair terminations. The results 
are obtained with sublattice potential � = 0 and interlayer potential U = 0.15t .

The topological insulator states of bilayer system can be clas-
sified by Chern number C and valley Chern number Cv [37–39],
which can be given by

C = CK + CK ′
(3)

Cv = CK − CK ′
(4)

The valley Chern number can be calculated from [40,41]

Cη = 1

2π

∑
n

∫
dkxdky(�n(k))η, (5)

where η = ±1 is the valley index, the integral around the K (K ′) 
point in the Brillouin zone, and �n is the momentum-space Berry 
curvature for the nth band [38,39,42,43]

�n(k) = −
∑
n′ 	=n

2Im〈ψnk|vx|ψn′k〉〈ψn′k|v y|ψnk〉
(εn′ − εn)2

. (6)

The summation in momentum space is over all occupied bands 
below the bulk gap and vx,y = ∂ H/∂kx,y is the velocity operator. 
Therefore, we can classify the topological quantum states by cal-
culating the above topological quantum numbers in the vicinity of 
valley K and K ′ [37,40].

3. Results and discussions

Two-dimensional hexagon lattice bilayers have been experi-
mentally observed to be AA or AB stacked configuration. Under the 
bias voltage, a band gap can open in AB-stacked bilayer system but 
still close in A A-stacked bilayer system [14], thus we only focus on 
AB-stacked bilayer system. Two-dimensional hexagon lattice rib-
bon have two principal edge terminations along and perpendicular 
to the band-length direction, respectively, known as armchair and 
zigzag terminations [32]. We first examine the energy spectra of 
the AB-stacked bilayer ribbon with both zigzag termination and 
armchair termination. The width of the zigzag edged nanoribbon 
of hexagon lattice bilayer is L = 152 nm (containing 240 zigzag 
chains) in this paper, as shown in Fig. 1(a).

For two-dimensional hexagon bilayers, the interlayer interaction 
can be tuned by an pressure [44], so we firstly show the evolution 
of gaps of bulk and edge bands of bilayer ribbon with zigzag termi-
nation in Fig. 2(a). We find the gap of bulk band opens all the time. 
However, the gap of edge band closes for t⊥/t < 1, but the gapless 
edge states disappear when t⊥/t > 1.1 And we find that t⊥/t = 1 is 
the critical situation. Unfortunately, for two-dimensional hexagon 
bilayer with armchair termination, the gaps of both bulk and edge 

1 When t⊥ is very close to zero, there is a very small edge gap [see the little peak 
in Fig. 2(a)] due to the effect of interlayer potential (U = 0.15t).
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