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We analyze here the common features of two dynamical regimes: a quantum and a classical one. We 
deal with a well known semi-classic system in its route towards the classical limit, together with its 
purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the 
classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is 
the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe’s symbolic patterns that 
characterize dynamical time series (representative of the semi-classical system under scrutiny) in their 
evolution towards the classical limit.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Information measures (IM) (see as examples [1–5], and ref-
erences therein) are of utility in the analysis of a given time 
series’ (TS) underlying dynamics. The standard Boltzmann–Gibbs–
Shannon entropy is the best known IM

S = −
n∑

i=1

pi ln pi, (1)

but of course, there exist other entropy-based quantifiers that may 
be profitably employed according to the researcher’s goals. We will 
apply one of these quantifiers, the Mutual Information [6], to a 
celebrated semiclassical system in its route towards the classical 
limit [7,8]. It is firmly established that the system’s dynamics ex-
hibits a quantum zone, a transition one, and a classic region [8]. 
This dynamics exhibits regular features plus i) some chaotic ones 
and ii) other type of dynamics as well that, although not chaotic, 
exhibit complex features [8]. This system has attracted intensive 
attention both from the dynamic [8] and the statistical points of 
view [9–11]. In this effort we wish to find out what are the com-
mon features observed during the transition process both in the quan-
tum regime and in the other ones. In order to do so we have first of all 
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to consider the issue of how to draw relevant information from a 
time series (TS) [12]. Data are often contaminated by stochastic 
noise [13,14]. Accordingly, distinct extraction-methodologies pro-
duce different quality’s degrees. In this work me apply Bandt and 
Pompe’s method for the purpose [15]. Note that an early symbolic 
approach is that of Beck and Graudenz [16]. With it we get a con-
venient probability distribution function (PDF) linked to the time 
series of interest.

This methodology converts the time series into a sequence of 
characteristic “patterns” (symbols) that can be easily visualized, 
characterized, and analyzed. One can then identify the patterns 
(symbols) of the quantum regime and investigate whether some 
of them “survive” in the classical limit.

Our semiquantum system and its classical analog are described 
in Section 2. In Section 3.1, Bandt and Pompe’s symbolic approach 
is briefly revisited. Also, basic features of the Mutual Information 
concept are remembered in Section 3.2. Our present results are 
presented in Section 4. Finally, some conclusions are drawn in Sec-
tion 5.

2. The classical-quantum transition

Such transition constitutes an important physics topic. Quan-
tum mechanics’ classic limit (CLQM) is a frontier issue [17–21]
and originating much work, as, for instance, [17,18] and refer-
ences therein. In this vein, people regard “quantum” chaotic mo-
tion as deserving concentrated interest. Recent progress can be 
consulted in [22]. Also, generalized uncertainty principles (GUP) 
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[23,24] attract attention. Zurek and others Habib [19–21] have dis-
cussed how our classical reality can emerge from the quantum 
world.

The present authors will work here from a semiclassical view-
point. We may speak, for starters, of both the WKB and Born–
Oppenheimer approximations. Our interest lies in the bipartite 
model of Bonilla and Guinea [25] and Cooper et al. [7], to which 
Kowalski et al. [1,26,8] have made extensive contributions. In the 
bipartition one system is of quantal nature while the remaining 
one is classical. The quantum part contributes in small measure to 
the overall picture [8]. Such scenario is illustrated by a two-level 
system’s interaction with an EM-field within a cavity, Bloch equa-
tions, or nuclear collective modes. The composite model of Cooper 
et al. represents the production of charged meson pairs [7,8].

2.1. The Hamiltonian

The pertinent Hamiltonian mixes quantum variables with clas-
sical ones. It reads

Ĥ = 1

2

(
p̂2

mq
+ P A

2

mcl
+ mqω

2 x̂2

)
, (2)

and we emphasize the presence of the product ω2 x̂2 in the third 
term. In Eq. (2) we have two quantum operators x̂ and p̂. More-
over, A and P A are classical quantities (canonically conjugate). As 
just stated, we encounter in the third term a nonlinear interaction 
involving ω2 = ωq

2 + e2 A2, where ωq is a frequency. The masses 
mq and mcl correspond, respectively, to the quantum and classical 
components of our bipartite system. Kowalski et al. have shown 
[26] that dealing with this Hamiltonian leads to an (autonomous)
nonlinear coupled differential equations’ system.

2.2. Nonlinear system of coupled differential equations

We face [26]

d〈x̂2〉
dt

= 〈L̂〉
mq

; d〈p̂2〉
dt

= −mq ω2〈L̂〉

d〈L̂〉
dt

= 2(
〈p̂2〉
mq

− mq ω2〈x̂2〉)
dA

dt
= P A

mcl

dP A

dt
= −e2mq A〈x̂2〉

L̂ = x̂p̂ + p̂x̂. (3)

The above system of equations can be derived from i) Ehrenfest’s 
relations for quantum variables and ii) canonical Hamilton’s equa-
tions for classical quantities [26]. The analysis of the classic limit 
is helped by consideration of the classical partner of (2) (where all 
variables are of classic mature). Hamilton’s equations lead one to a 
purely classic partner of the system (3). See, for more details, [26].

2.3. Dealing with our nonlinear ODE system

One conveniently reach the classic limit as the mathematical 
limit of a quantity Er that could be thought of as a “relative ener-
gy” [8]

Er = |E|
I1/2ωq

→ ∞, (4)

with E the total system’s energy. The quantity I is a motion-
invariant of (3), related to Heisenberg’s celebrated Principle

I = 〈x̂2〉〈p̂2〉 − 〈L̂〉2

4
≥ h̄2

4
. (5)

We deal with the system (3) via numerical methodologies, for mul-
tiple sets of initial conditions. Things are best described by plotting 
relevant quantities against the associated multiple values of Er in 
the range [1, ∞].

It is firmly established in the Literature (see, for instance [26]) 
that i) if Er = 1, the quantum component of the bipartite sys-
tem absorbs the whole of the energy E = I1/2ωq while, ii) quan-
tal and classical variables are localized at the fixed point (〈x̂2〉 =
I1/2/mqωq, 〈p̂2〉 = I1/2mqωq, 〈L̂〉 = 0, A = 0, P A = 0) [26], and, be-
cause A = 0, no coupling between the two systems ensues. For 
Er ∼ 1 our composite system becomes an “almost” quantum one 
of quasi-periodic dynamics [8].

The time series that we will discuss here is indeed an Er -series. 
When Er grows, the quantum features tend to vanish in a rather 
rapid fashion and one speaks of entering a semiclassical zone. 
A particular value Er

cl signals that the solutions to Eqs. (3) start re-
sembling classicality [8]. Convergence of the solutions for Eqs. (3)
to the classical ones is reached and, for large Er -values, our com-
posite systems is a classic one. One considers the time series’ 
sector 1 < Er < Er

cl as a semi-classical region. In such a zone we 
distinguish a special value Er = Er

P . There, one can speak of emer-
gence of chaos [26].

3. Our present approach

As stated above, we will associate our physical problem to a 
pseudo time-series (PTS) in which what unfolds is not time but 
the value of Er , in the Er -progress towards the classical limit (in-
cluding the classical analog of the Eqs. (3)). That is, we consider 
multiple realizations of our system, each of them with different 
initial conditions chosen in such a way that different Er -values 
ensue. There is a different Er -value for each realization. This 
“Er -evolution” is, of course, not a unitary one. Our time series are 
Er -series, NOT temporal ones. We do not study time evolution but 
Er -one.

To obtain the PTS-associated probability distribution functions 
we use the rather popular Bandt and Pompe’s (BP) approach [15]. 
With these PDFs we compute the Mutual Information (MI) for each 
Er value. These MIs constitute our main research tool here, to-
gether with the TS-patterns (symbols) that the Bandt–Pompe help-
fully yields.

3.1. Probability distributions based on the Bandt–Pompe’s methodology

We employ here the BP procedure [15] in order to obtain the 
probability distribution P associated with our Er -(pseudo) time se-
ries. The full details are given, for instance, in [1,15,27] and will not 
be repeated here. One assigns to each Er -value a D-dimensional 
vector of preceding times. This vector is converted into a unique 
symbol or pattern.

3.2. Forbidden patterns

An interesting feature of the BP treatment is the existence of 
so-called forbidden patterns (see [28,29] and references therein).

For deterministic one dimensional maps, it has been conclu-
sively shown that not all the possible ordinal patterns (as defined 
using Bandt and Pompe’s methodology) can be effectively mate-
rialized into orbits, which in a sense makes these patterns for-
bidden (see [28,29] and references therein). We insist: this is an 
established fact, not a conjecture. The existence of these forbidden 
ordinal patterns becomes a persistent feature, a “new” dynamical 
property. For a fixed pattern-length (embedding dimension D) the 
number of forbidden patterns of a time series (unobserved pat-
terns) is independent of the series’ length N . It must be realized 
that this independence does not characterize other properties of 
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