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Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems 
of an infinite plane composed of two different quasicrystal half-planes are taken into account. The 
solutions of the internal and interfacial Green’s functions of quasicrystal bi-material are obtained. 
Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line 
dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants 
on the coupled field components are investigated.
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1. Introduction

Quasicrystals (QCs) were found initially by Shechtman et al. [1]. 
Being a new solid structure, they differ from ordinary crystals and 
non-crystals. QCs are promising materials with light mass and high 
strength, possessing great development trends, being adopted pro-
gressively by industry, for instance, in automobile, aerospace or 
power source technologies. On account of the quasi-periodic sym-
metry of QCs, concepts of the high-dimensional space have been 
introduced instead of the classical crystallographic theory. The 
phonon field represents the lattice vibrations in QCs, and the pha-
son field depicts its quasi-periodic rearrangement of atoms; both 
these fields can be used to describe the elasticity of QCs. One-
dimensional (1D) QCs exhibit just one quasi-periodic axis, while 
the perpendicular plane reveals classical crystalline properties. 
A large number of papers have come off the press on the elastic-
ity of QCs. Chen et al. [2] analyzed three-dimensional (3D) elastic 
problems of 1D hexagonal QCs by quasi-harmonic functions. Gao 
[3] derived the exact solutions for deep beams of 1D QCs without 
any presupposes. Li and Li [4] obtained the 3D thermoelastic gen-
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eral solutions of 1D QCs. Li and Fan [5] developed the stress poten-
tial function theory for plane problems of icosahedral QCs. More-
over, some scholars have studied defect problems [6–8] of QCs.

The researches on Green’s functions of anisotropic elastic solids 
[9,10] have been carried out early, then Green’s functions of multi-
field coupled problems have been analyzed. Pan [11] analyzed 3D 
Green’s functions of magneto-electro-elastic materials under point 
loadings by the extended Stroh formalism. Sevostianov et al. [12]
derived Green’s functions of piezoelectric crystals with 622 hexag-
onal symmetry subjected to point forces and point electric charges. 
Moreover, Green’s functions of nonlinear [13] and dynamic systems 
[14] have been derived. In accordance with the Stroh formalism 
and conforming mapping, Qin [15] derived the solutions of Green’s 
functions of defective electro-magneto-thermo-elastic solids ex-
posed to thermal loading. Most of the engineering structures con-
tain internal interfaces. When these structures with some defects, 
such as dislocations, cracks or holes, are exposed to multi-physical 
loads, failure and fracture may occur. So it is of crucial importance 
in structural design to study these defects. Green’s functions have 
been extended to thermoelastic [16], thermo-electro-elastic [17], 
electro-magneto-thermo-elastic [18] and other bi-materials [19,
20]. Furthermore, the Green’s function method has also been iden-
tified as an important approach in the studies of elastic theory of 
QCs [16,21,22].
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Because of the coupling effects between electric and phonon, 
phason and electric fields, analytical solutions of QCs with piezo-
electric effect are hard to be obtained. The piezoelectric effect of 
QCs [23–31] has been studied to a certain degree, however by far 
not sufficiently. Due to its sententiousness, QCs with piezoelectric 
effect will be investigated in this paper by fusing the theories of 
QCs and piezoelectric materials together and using a generalized 
Stroh formalism.

Various boundary value problems, specifically fracture prob-
lems, can be analyzed in depth on basis of the solutions of Green’s 
functions. The analytical solutions are favorable for engineering 
applications, fostering a deep understanding of the mechanical be-
havior of the materials. In the present paper, the internal and 
interfacial Green’s functions of a 1D QC bi-material with piezoelec-
tric effect are presented. By using the Stroh formalism, the coupled 
fields of 1D QC bi-materials are obtained for different cases. Nu-
merical results are given and the mechanical behavior under the 
influence of different coupling constants is analyzed.

2. Stroh formalism of QCs with piezoelectric effect

In the linear elastic theory of QCs, the geometry equations, con-
stitutive relations and equilibrium equations of 1D piezoelectric 
QCs without body force can be expressed as

εmj = (um, j + u j,m)/2, w3 j = w3, j, E j = −φ, j, (1)

σmj = Cmjvlεvl + Rmj3l w3l − e(1)

lmj El,

H3 j = R vl3 jεvl + K3 j3l w3l − e(2)

l3 j El,

D j = e(1)

jvlεvl + e(2)

j3l w3l + ξ jl El,

(2)

σmj, j = 0, H3 j, j = 0, D j, j = 0, (3)

where m, j, v , l = 1, 2, 3, and the denotation “,” represents the 
derivative operation for the space variables. um , w3 and φ are 
the phonon displacements, phason displacement, and electric po-
tential, respectively, and the atom arrangement is periodic in the 
x1–x2 plane and quasi-periodic in the x3-axis; σmj and εmj are 
the phonon stresses and strains, respectively; H3 j and w3 j are the 
phason stresses and strains, respectively; D j and E j are the electric 
displacements and electric fields, respectively, and the polariza-
tion direction is along the x3-axis; Cmjvl and K3 j3l are the elastic 
constants in the phonon and phason fields, respectively; Rmj3l rep-

resent the phonon–phason coupling elastic constants; e(1)

jvl and e(2)

j3l
are the piezoelectric constants in the phonon and phason fields, 
respectively; ξmj are the permittivity constants.

For plane problems, only the x1–x3 plane is considered, so all 
the field components are independent of x2. The constitutive rela-
tions and equilibrium equations of piezoelectric QCs are rewritten 
in a compressed notation as

σα j = Eα jK luK ,l, (4)

σα1,1 + σα3,3 = 0, (5)

where α, K = 1, 2, 3, 4, 5,

u = [u1, u2, u3, w3, φ]T, σα j = σα j (α = 1,2,3),

σα j = H3 j (α = 4), σα j = D j (α = 5),

Emjvl = Cmjvl, Emj4l = Rmj3l, Emj5l = e(1)

lmj, E4 jvl = R vl3 j,

E5 jvl = e(1)

jvl, E4 j4l = K3 j3l, E4 j5l = e(2)

l3 j , E5 j4l = e(2)

j3l ,

E5 j5l = −ξ jl, (6)

where the superscript “T” stands for the matrix transpose. Yang et 
al. [32] introduced the generalized stress vector ϕ representing the 
stress components σα1 and σα3,

σα1 = −ϕα,3, σα3 = ϕα,1, (7)

and then derived the general solution of 1D piezoelectric QCs for 
plane problems

u = Af(zα) + A f(zα),ϕ = Bf(zα) + B f(zα), (8)

where the bar denotes the conjugate complex quantity, and

A = [a1,a2,a3,a4,a5], B = [b1,b2,b3,b4,b5],
f(zα) = [

f1(z1), f2(z2), f3(z3), f4(z4), f5(z5)
]T

,

zα = x1 + pαx3.

(9)

It is noted that the Stroh’s sextic formalism for anisotropic elas-
tic materials [33] is extended to a tenth-order formalism for 1D 
piezoelectric QCs. The mathematical formulations of the Stroh for-
malism for 1D piezoelectric QCs keep the same form as those for 
anisotropic elastic materials, but with different orders. A and B are 
two constant matrices. aα and bα are the homologous eigenvec-
tors. fα(zα) are the arbitrary functions depending on zα . pα are 
the distinct eigenvalues of the following equation, i.e. multiple 
eigenvalues are excluded,

Nξ = pξ , ξ = [a,b]T, (10)

where N is a 10 × 10 matrix,

N =
[

N1 N2

N3 NT
1

]
,

N1 = −T−1RT, N2 = T−1, N3 = RT−1RT − Q,

(11)

the matrices Q, R and T are 5 × 5 real matrices as follows

Q αK = Eα1K 1, RαK = Eα1K 3, TαK = Eα3K 3, (12)

and

pα+5 = p̄α, Im pα > 0, aα+5 = āα,

bα+5 = b̄α (α = 1,2,3,4,5),
(13)

where Im represents the imaginary part. For obtaining the solu-
tions in a real form, the following matrices are introduced

S = i
(
2ABT − I

)
, H = 2iAAT, L = −2iBBT, (14)

where i = √−1. Thus the problem of elasticity of 1D QCs with 
piezoelectric effect can be transformed into that of calculating the 
characteristic matrices, characteristic values and the complex vec-
tor f(zα) with the given boundary conditions.

3. Green’s functions of 1D QC bi-materials with piezoelectric 
effect

In this section, Green’s functions will be extended to QC bi-
materials with piezoelectric effect. The internal and interfacial 
Green’s function solutions are obtained.

3.1. Interior Green’s function solutions

The problem of an infinite plane which is composed of two dif-
ferent piezoelectric QCs is taken into account. The line forces p̂
and line dislocations b̂ are acting at the interior point x̂ = (x̂1, ̂x3)

as shown in Fig. 1. The boundary conditions can be expressed as

u+ = u−, ϕ+ = ϕ−, along the interface x3 = 0, (15)˛

C

dϕ− = p̂,

˛

C

du− = b̂

for any closed curve C enclosing the point x̂, (16)

σα j → 0, at infinity, (17)
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