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The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer 
method. We perform a perturbative expansion to first-order and split the Dirac field into normal and 
tangential components to the surface. In contrast to the known behavior of second order equations 
like Schrödinger, Maxwell and Klein–Gordon, we find that there is no geometric potential for the Dirac 
equation on a surface. This implies that the non-relativistic limit does not commute with the thin-
layer method. Although this problem can be overcome when second-order terms are retained in the 
perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of 
freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit 
and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The behavior of quantum systems confined on a surface has 
been extensively investigated for decades in the context of con-
densed matter physics. Although the main focus has been on non-
relativistic systems, recently there has been renewed interest in 
systems that have relativistic dispersion relations at low energy, 
such as graphene and topological insulators. It has been shown 
that a flat sample of graphene can be modeled by a massless Dirac 
Hamiltonian which can be derived from the tight-binding model 
in the continuum approximation [1]. If the sample of graphene 
presents curvature, there are two main approaches to model it 
[2,3]. One model is based on a combination of tight-binding and 
elasticity theory [4] and the other model is based on the formu-
lation of quantum field theory in curved space [5]. In the latter, 
it is assumed that the dynamics of carriers in graphene in low 
energies is described by Dirac equation in (2 + 1) dimensional 
curved space–time. More recently, however, Atanasov and Saxena 
have pointed out that, to be consistent with the Heisenberg uncer-
tainty principle, these approaches should not overlook the fact that 
the carriers are intrinsically three-dimensional objects [6].

Already in the seventies Jensen and Koppe [7] and indepen-
dently Costa ten years later [8], developed a formalism with the 
aim of studying the Schrödinger equation confined to a curved sur-
face. The so-called thin-layer quantization (a confining potential for-
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malism) takes into account the full three-dimensional character of 
the carriers. Unlike previous methods, it constitutes a well-defined 
procedure which does not suffer from the well-known ordering 
ambiguity problem, and it is consistent with the Heisenberg’s un-
certainty principle. In this approach, the Schrödinger equation on 
the surface can be derived and the result contains a geometrical 
potential expressed in terms of both the intrinsic and the extrinsic 
curvatures [7,8]. It has been shown that for flat surfaces the result-
ing Schrödinger equation is simply the Schrödinger equation for 
two-dimensional systems. It is for this reason that this equation 
has been so effective to describe quasi-two-dimensional systems. 
However, there are significant effects in the presence of curvature, 
such as the geometrical potential, which has been the subject of 
intensive research [9–16].

The remarkable feature of the thin-layer approach is that it as-
sumes that there is a physical mechanism that confines the parti-
cles on the surface. Three conditions are required for the confining 
physical potential Vε [7,8,17]: (i) Vε has a deep minimum relative 
to the surface; (ii) Vε depends only on coordinates, which are nor-
mal to the surface and (iii) Vε depends the parameter ε in such a 
way that as ε → 0 the potential goes to infinity outside of the sur-
face. If the confinement occurs for example along the z-direction, 
the parameter ε is related to the confinement width (l) through 
l2 = 〈z2〉 = ε2l20, where l20 is a characteristic length. Thus, ε is a 
measure of how much the system can be modeled by a quasi-two-
dimensional system.

Since from the experimental point of view it is unrealistic take 
ε → 0 (and incompatible with the Heisenberg uncertainty princi-
ple), it is more appropriate to consider a perturbative expansion in 
ε which can be understood as an effective theory on the surface. In 
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the non-relativistic case, a complete perturbative expansion of the 
Hamiltonian was performed in Ref. [17]. The zeroth-order term can 
be interpreted as strong fluctuations of the system in directions 
normal to the surface. The next non-vanishing term can be inter-
preted as the Hamiltonian describing the effective dynamics on a 
surface [7,8,17]. Higher-order terms take into account further cou-
plings between normal and tangent degrees of freedom [17,18]. 
The effective Schrödinger equation on a surface is given by [7,8,17]

ih̄
∂ψ

∂t
= −h̄2

2m|g|1/2
∂i gi j|g|1/2∂ jψ − h̄2

2m
(H2 − K )ψ, (1)

where gij is the metric on the surface, H is the mean curvature (ex-
trinsic) and K is the Gaussian curvature (intrinsic). The last term in 
Eq. (1) is a curvature-induced quantum potential, i.e., the so-called 
geometrical potential.

The thin-layer method has been extended to include external 
electromagnetic fields [19,13,20,21], generalized to codimensions 
higher than one [22–24,17,25] and has also been applied to the 
study of Maxwell [26,27], Pauli [28,29], Klein–Gordon [30,31] and 
Dirac [32–38,6,39] equations. Furthermore, in 2010, Szameit et al. 
found experimentally an optical analogue of the geometric poten-
tial [27] and Onoe et al. reported in 2012 the first experimental 
evidence of the geometric potential in a quantum system [40].

The effective Dirac equation on a surface was considered long 
ago by Burgess and Jensen [33], for surfaces with zero intrinsic 
curvature, and it has been used in the following form for more 
than two decades1 [32–37,6,39,41][

ih̄eμ
a γ a

(
∂μ − �̃μ

)
− mc + γ 3 H

]
χ = 0, (2)

where the eμ
a are the dreibeins and the γ a are the Dirac matrices. 

Although it is sometimes overlooked, we point out that the original 
deduction in Ref. [33] was performed only for surfaces with zero 
Gaussian curvature. As we will show it is not clear from previous 
investigations [32–37,6,39] what would be the exact meaning of 
�̃μ . This has led to the misconception that there is a geometric 
potential for the Dirac equation in a perturbative expansion up to 
first-order in ε . An exception is found in the article of Maraner and 
Pachos, [38], where the effective Dirac equation on the surface, up 
to first-order in ε , appears without the geometric potential. How-
ever, the authors do not acknowledge any disagreement with the 
previous literature, nor show the explicit calculations that would 
explain why the geometric potential is absent.

In this paper, we perform a detailed derivation of the Dirac 
equation on a surface using the thin-layer approach. As we shall 
see, contrary to the usual belief, there is no geometric potential for 
the Dirac equation to first-order in ε . This is in contrast with the 
Schrödinger, Pauli, Maxwell and Klein–Gordon equations on a sur-
face, where a geometric potential is generated to first order in ε . 
The absence of geometric potential in the Dirac equation implies 
that the non-relativistic limit may not commute with the thin-
layer procedure. However, this can be understood once we realize 
that the geometrical potential of second order equations emerges 
from second-order terms in ε and that when taking the non-
relativistic limit after implementing the thin-layer method, some 
second-order terms in ε are lost. Therefore, we show that it is pos-
sible to add a term to the effective Dirac equation on the surface, 
such that the non-relativistic limit is recovered and some consis-
tency conditions are satisfied.

Our paper is organized as follows. In Sec. 2 we introduce non-
coordinate bases for an adapted coordinate frame. In Sec. 3 we 

1 The sign of the mean curvature depends on the choice of the unit normal vector 
and has no intrinsic meaning, Eq. (2) is not necessarily invariant to the choice of the 
normal vector, which leads to ambiguity.

derive the effective Dirac equation for a particle constrained to a 
surface. In Sec. 4 we discuss the non-relativistic limit of the ef-
fective Dirac equation on a surface. Finally, Sec. 5 contains our 
conclusions.

2. Non-coordinate bases for a surface

Consider a surface S embedded in a three-dimensional Eu-
clidean space. A coordinate transformation from the Cartesian co-
ordinate system (X1, X2, X3), to an adapted curvilinear coordinates 
system (q1, q2, q3), in a sufficiently small neighborhood of S , is 
given by

X(q1,q2,q3) = x(q1,q2) + q3n(q1,q2), (3)

where x(q1, q2) are the Cartesian coordinates of a point in S , 
n(q1, q2) is an orthonormal vector field to S , (q1, q2) are coordi-
nates parametrizing the surface and |q3| is the distance between 
S and the point of coordinates (q1, q2, q3). The components of the 
metric tensor are defined by

G MN = ∂X

∂qM
· ∂X

∂qN
, (4)

where the Latin indices M, N, ... run from 1 to 3. One can com-
pletely characterize the surface by the first fundamental form 
gij ≡ ti · t j (the metric) and by the second fundamental forms, the 
so-called extrinsic curvature, α3i j ≡ −ti · ∂ j n̂, where ti are two tan-
gent vectors to the surface2 [42]. Additionally, a space–time point 
can be described using the time coordinate ct = X0 = q0. Thus, 
one can construct a metric for a (3 + 1)-dimensional Minkowskian 
space–time in the adapted coordinate system as

ds2 = G ABdqAdqB = G00dq0dq0 − G MNdqMdqN , (5)

where G00 = 1, the Latin indices A, B, ... run from 0 to 3. Note 
that the space–time is flat and in the coordinates X A the metric is 
ds2 = ηABdX AdX B , with ηC D = diag(+1, −1, −1, −1).

Thus, one can rewrite G AB in the adapted coordinates system 
as (the Greek indices μ, ν, ... run from 0 to 2)

G AB =
(

γμν 0
0 η33

)
, (6)

with3 η33 = η33 = −1 and where

γμν = gμν − 2q3α3μν + (q3)2α3μρ gρσ α3σν, (7)

where gμν is defined in the hypersurface by

gμνdqμdqν = dq0dq0 − gijdqidq j, (8)

with

gij = ∂X

∂qi
· ∂X

∂q j
(9)

and α3μν is defined in the hypersurface by

α3μν =
(

0 0
0 α3i j

)
. (10)

It is clear from the definitions that gμν and α3μν do not depend 
on q0.

Let us introduce a non-coordinate basis, Ê I , which is obtained 
by a rotation of a coordinate basis, {E A} = {∂/∂A}, preserving the 
orientation,4

2 Latin indices i, j, ... run from 1 to 2.
3 In our conventions α3μρ gσρ = −α

ρ
3μ .

4 Latin indices I, J , ... , run from 0 to 3.
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