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Monogamy of quantum correlations is a vibrant area of research because of its potential applications in 
several areas in quantum information ranging from quantum cryptography to co-operative phenomena 
in many-body physics. In this paper, we investigate conditions under which monogamy is preserved for 
functions of quantum correlation measures. We prove that a monogamous measure remains monogamous 
on raising its power, and a non-monogamous measure remains non-monogamous on lowering its power. 
We also prove that monogamy of a convex quantum correlation measure for arbitrary multipartite pure 
quantum state leads to its monogamy for mixed states in the same Hilbert space. Monogamy of squared 
negativity for mixed states and that of entanglement of formation follow as corollaries of our results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quantum correlations [1,2], of both entanglement [1] and 
information-theoretic [2] paradigms, is an indispensable resource 
in quantum information theory [3]. While entanglement mea-
sures capture the nonseparability of two or more subsystems, 
information-theoretic measures like quantum discord [4,5] can de-
tect nonclassical properties even in separable states. It is desirable 
that a quantum correlation measure Q belonging to either of two 
above classes satisfies certain basic properties [1,2,6] such as pos-
itivity, Q(ρAB) ≥ 0, and monotonicity, i.e., is non-increasing under 
a suitable set of local quantum operations and classical commu-
nications [in particular, invariance under local unitaries U A ⊗ V B , 
Q(ρAB) = Q(U A ⊗ V BρAB U †

A ⊗ V †
B), as well as no-increase upon 

attaching a local pure ancilla, Q(ρAB) ≥ Q(ρAB ⊗ |0〉C 〈0|)]. These 
properties are valid for several known measures of quantum cor-
relations, including all entanglement measures. In particular, pos-
itivity and invariance under local unitaries are standard require-
ments [7].

Quantum correlations, entanglement in particular, is crucial in 
quantum information processing and quantum computation [3], 
in describing area laws [8–19], in quantum phase transition and 
detecting other cooperative quantum phenomena in various in-
teracting quantum many-body systems [20–23]. Hence, quantum 
correlations form a fundamental aspect of modern physics and a 
key enabler in quantum communication and computation tech-
nologies. Being a resource, quantification of quantum correlations 
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is important. Although a number of correlation measures for bi-
partite (qubit) systems have been studied extensively in last few 
decades, there has not been much investigation of multipartite 
correlations owing to difficulty in defining multipartite correla-
tions.

The concept of monogamy [24,25] is a distinguishing feature 
of quantum correlations, which sets it apart from classical corre-
lations. Monogamy of quantum correlations is an active area of 
research, and has found potential applications in quantum infor-
mation theory like in quantum key distribution [26–28], in classi-
fying quantum states [29–31], in distinguishing orthonormal quan-
tum bases [32], in black-hole physics [33,34], to study frustrated
spin systems [35], etc. Moreover, it has proved to be a useful tool 
in exploring multipartite nonclassical correlations [24,25,36]. Qual-
itatively, monogamy of quantum correlations places certain restric-
tions on distribution of quantum correlations of one fixed party 
with other parties of a multipartite system. In particular, if party A 
in a tripartite system ABC is maximally quantum correlated with party B, 
then A cannot be correlated at all to the third party C. This is true for 
all quantum correlation measures, and is a departure from classical 
correlations which are not bound to such constraints. That is, clas-
sical correlations do not satisfy a monogamy constraint [37–46]. 
In other words, monogamy forbids free sharing of quantum corre-
lations among the constituents of a multipartite quantum system. 
This is a nonclassical property in the sense that such constraints 
are not observed even in the maximally classically-correlated sys-
tems like

ρABC = 1

2

(|000〉〈000| + |111〉〈111|). (1)
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However, two or more parties in a multipartite quantum state 
do not necessarily always share maximal quantum correlation, and 
are thus able to share some correlations with other parties, al-
though in a restrictive manner. Thus, monogamy relations help 
in determining entanglement structure in the multipartite set-
ting. Furthermore, it has been argued to be a consequence of the 
no-cloning theorem [47–49]. Monogamy, like entanglement [50], 
appears to be the trait of multipartite entangled quantum sys-
tems. Interestingly, the notion of monogamy is not restricted only 
to quantum correlation measures, but has spawned its wing in 
other quantum properties such as Bell inequality [51–53], quan-
tum steering [54], and contextual inequalities [55–57]. A quantum 
correlation measure that satisfies the “monogamy inequality” for 
all quantum states is termed “monogamous”. However, we know 
that not all quantum correlation measures, even for three-qubit 
states, satisfy monogamy. Entanglement measures such as concur-
rence [58,59], entanglement of formation [60], negativity [61], etc., 
apart from information-theoretic measures such as quantum dis-
cord [4,5] are known to be, in general, non-monogamous. In recent 
developments on monogamy, we have seen that exponent of a 
quantum correlation measure and multipartite quantum states play 
a remarkable role in characterization of monogamy [62,63]. A non-
monogamous quantum correlation measure can become monoga-
mous, for three or more parties, when its power is increased [62]. 
For instance, concurrence, entanglement of formation, negativity, 
quantum discord are non-monogamous for three-qubit states, but 
their squared versions are monogamous. In particular, it has been 
shown that monotonically increasing functions of any quantum cor-
relation can make all multiparty states monogamous with respect to 
that measure [62]. We note that the increasing function of the corre-
lation measure under consideration satisfies all the necessary properties 
for being a quantum correlation measure including positivity and mono-
tonicity under local operations, mentioned above. Furthermore, the 
function can be so chosen that it is reversible [64,65], such that 
the information about quantum correlation in the state under con-
sideration, after applying the function on the quantum correlation 
remains intact. The power of a correlation measure is an exam-
ple of such a function. It is interesting to note that the function 
f (x) = xα is concave for 0 < α ≤ 1 and convex for 1 ≤ α ≤ ∞
on the interval (0, ∞). The power function has an intrinsic geo-
metric interpretation. The power defines the slope of the graph. 
The higher power, the graph is nearer to the vertical axis. It has 
been found that several measures of quantum correlations like 
squared concurrence [24,25], squared negativity [66–68], squared 
quantum discord [36], global quantum discord [69,70], squared en-
tanglement of formation [71,72], Bell inequality [73–75], EPR steer-
ing [76,77], contextual inequalities [78,79], etc. exhibit monogamy 
property. Thus, we observe that the convexity plays a key role in 
establishing monogamy of quantum correlations. In another case, 
non-monogamous quantum correlation measures become monog-
amous, for moderately large number of parties [63].

The motivation behind this paper is three-fold. In this letter, 
we have asked (i) under what conditions monogamy property of 
quantum correlations is preserved, (ii) does monogamy for arbi-
trary pure multipartite state lead to monogamy of mixed states, 
and (iii) are there more general and stronger monogamy rela-
tions different from the standard one in Eq. (3). We prove that 
while a monogamous measure remains monogamous on raising 
its power, a non-monogamous measure remains non-monogamous 
on lowering its power. We also prove that monogamy of a con-
vex quantum correlation measure for an arbitrary multipartite pure 
quantum state leads to its monogamy for the mixed state in the 
same Hilbert space. Monogamy of squared negativity for mixed 
states and that of entanglement of formation follow as direct corol-
laries. Authors of Ref. [80] have proposed following two conjec-
tures regarding monogamy of squared entanglement of formation 

in multiparty systems: the squared entanglement of formation may be 
monogamous for multipartite (i) 2 ⊗ d2 ⊗ · · · ⊗ dn, and (ii) arbitrary 
d-dimensional, quantum systems. Our previous result partially an-
swers these conjectures in the sense that it now only remains to 
prove the monogamy of the squared entanglement of formation for 
pure states in arbitrary dimensions. We have further given hierar-
chical monogamy relations, and a strong monogamy inequality

Qα(ρAB) ≥ 1

2n−1 − 1

∑
X

Qα (ρA X ) ≥
∑

j

Qα
(
ρAB j

)
, (2)

where X = {Bi1 , · · · , Bik } is a nonempty proper subset of B ≡
{B1, B2, · · · , Bn}, and α ≥ 1 is some positive real number.

This letter is organized as follows. In Section 2, we succinctly
review the notion of monogamy of quantum correlations. While 
the main results of this letter are presented in Section 3, we give 
a summary in Section 4.

2. Monogamy of quantum correlations

Consider that Q is a bipartite correlation measure. If for a mul-
tipartite quantum system described by a state ρAB1 B2···Bn ≡ ρAB , 
the following inequality

Q(ρA(B1···Bn)) ≥
n∑

j=1

Q(ρAB j ), (3)

holds, then the state ρAB is said to be monogamous under the 
quantum correlation measure Q [24,25]. Otherwise, it is non-
monogamous. Moreover, the deficit between the two sides is re-
ferred to as monogamy score [81], and is given by

δQ = Q(ρAB) −
n∑

j=1

Q(ρAB j ). (4)

Monogamy score can be interpreted as residual entanglement of 
the bi-partition A : rest of an n-party state that cannot be ac-
counted for by the entanglement of two-qubit reduced density 
matrices separately.

It should be noted here that the monogamy inequality in Eq. (3)
is just one constraint on the distribution of quantum correlations. 
Suppose Q does not obey the monogamy relation in Eq. (3), then 
is it non-monogamous? Can it be shared freely among the con-
stituent parties? It may happen that it obeys the following con-
straint

n∑
j=1

Q(ρAB j ) ≤ b(	= n), (5)

and be still monogamous. Here we assume that Q is normalized, 
i.e., 0 ≤ Q ≤ 1. Numerical evidence of such a limitation was ob-
served for entanglement of formation and concurrence in Ref. [72]
for three-qubit systems.

Can there be more general and stronger monogamy relations 
than in Eq. (3)? Considerable attempts have been made to address 
this question from different perspectives [6,80,82–84] recently.

3. Results

In this section, we prove that a monogamous measure remains 
monogamous on raising its power, a non-monogamous measure 
remains non-monogamous on lowering its power, and monogamy 
of a convex quantum correlation measure for arbitrary multipar-
tite pure quantum states leads to its monogamy for the mixed 
states. We also examine tighter monogamy inequalities compared 
to the standard one in Eq. (3), and hierarchical monogamy rela-
tions. Throughout our discussion we denote the multipartite quan-
tum state ρAB1 B2···Bn by ρAB , unless stated otherwise.
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