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An ensemble of non-interacting bouncing balls being acted on by a constant gravitational force, starting 
at rest from a uniform density distribution, will develop a structure of sharply peaked density waves. We 
describe these waves by computing the density profile of such a system analytically, and we find that the 
analytical results are in good agreement with numerical findings. We suggest that in a real system, these 
density waves could be used to produce measurements of the strength of a gravitational field.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Systems of elastically or inelastically bouncing balls have been 
a subject of interest in a number of different fields of physics. 
Researchers have used systems involving bouncing balls to study 
the behavior of dynamical systems, and especially the emergence 
and characteristics of chaos. Different variations of these sys-
tems are often complex enough to demonstrate physically in-
teresting behavior while still being simple enough to be ana-
lytically tractable. One well-studied variant involves an oscillat-
ing or vibrating lower boundary with which the balls can ex-
change energy [1,2]. Such systems are often used as a model for 
Fermi acceleration [3–7]. A number of authors have studied the 
dynamical effects of collisions with differing degrees of elastic-
ity or inelasticity [8,9]. Related systems have also been studied 
in the context of adding gravity to the classical billiard prob-
lem [10].

When used as a vehicle with which to better understand non-
linear dynamical systems, models of this kind can potentially 
be useful for understanding the behavior of a range of systems 
ranging from population biology to cryptography [11]. However, 
bouncing-ball models can also be useful in more direct ways. For 
instance, the complexities associated with bouncing dynamics may 
help to explain chaotic behavior in structures that contain pin 
joints with internal degrees of freedom [12].
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Complex density wave structures can arise in systems without 
any inter-particle interactions, under the right conditions. One par-
ticularly simple example is a one-dimensional system of particles 
in a linear gravitational potential V (x) = mgx with boundary con-
ditions so that the particles bounce elastically at x = 0 (in this 
paper, the boundary will not vibrate or oscillate). If N particles be-
gin at rest, uniformly distributed between x = 0 and x = L, we start 
to see a characteristic pattern of high-density pulses immediately. 
Specifically, we see a series of sawtooth-like structures that propa-
gate from small x to large x before disappearing at x = L. As time 
passes, these saw-toothed waves become increasingly frequent and 
thinner. Fig. 1 shows a series of images of these saw-toothed pat-
terns.

We will start by deriving an analytical expression for the den-
sity distribution of the particles in this system at an arbitrary time. 
We will observe in this expression the presence of saw-toothed 
wave structures that have all of the characteristics that we ex-
pect, and that are in good agreement with the results of numerical 
simulations, as shown in Fig. 2. We will also discuss possible ap-
plications of this phenomenon.

2. Partitioning parameter space

For a particle that starts at rest at a position x0, it takes a to-
tal interval of time �t f = √

2x0/g to fall to x = 0. Since the period 
of the particle’s motion will be 2�t f , it will be at x = 0 when-
ever t = (2n + 1)�t f and back at x = x0 for t = 2n�t f , where 
n ∈ {0, 1, 2, ...}.

At any particular time t , we can solve these expressions to find 
the set of particles currently at the maximal heights on their tra-
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Fig. 1. These plots show snapshots of the density distribution with varying times. To get these distributions, we computed the positions of one million particles that started 
out uniformly distributed from 0 to L at t = 0.

Fig. 2. The left plot shows a density distribution at t = 3
√

2L/g obtained by computing the trajectories of one million particles. The right plot shows the density distributions 
corresponding to our analytical result for the first few nonempty Rk intervals.

jectories; these particles are defined by x = x0 = gt2/8n2. A similar 
procedure gives the set of particles currently at x = 0 as x0 =
gt2/2(2n + 1)2. Then the region in x0-space of initial conditions 
for which particles will have bounced k times can be written as

Rk =
{

x0 : gt2

2(2k + 1)2
≤ x0 ≤ gt2

2(2k − 1)2
, x0 ≤ L

}
. (1)

For any time t > 0, there will be regions that have bounced an 
arbitrarily large number of times, since the bounce period goes 
to zero as x0 goes to zero. However, at later times, there will be 
a minimal k for which Rk is nonempty. We can find the mini-
mal k by looking at the slowest-bouncing particle, which will have 
x0 = L. The result is that

kmin =
⌊

1

2
+ t

2

√
g

2L

⌋
. (2)

3. From trajectories to density waves

Within each individual region Rk , we can solve for the con-
stituent particles’ trajectories explicitly. A particle that has bounced 
k times and that started at x = x0 at t = 0 last bounced at tbounce =
(2k − 1)

√
2x0/g . Then until the particle leaves Rk (that is, until its 

next bounce), we can write its position as

x(t) = − g

2
(t − tbounce)

2 + √
2gx0 (t − tbounce) . (3)

From this expression, we would like to get a density distribution 
nk(x) for the elements of Rk , in the continuous limit (so that we 
imagine initially having n0 particles per unit length). Now, in the 
limit as k → ∞, this is an easier problem: the region Rk becomes 
arbitrarily thin in x0-space, so the particles in Rk just trace out the 
trajectory of the kth bounce of a particle that starts at x0. In this 
case, the origin of a saw-toothed density distribution is intuitively 
clear, since we can just invert the velocity of the particle to get 
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