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1. Introduction

As main contents of modern theory of integrable systems, soliton equations exhibit extremely rich mathematical properties and wide
physical applications. In half a century, classical soliton equations [1], namely, partial differential equations sharing common features
with the famous Korteweg-de Vries (KdV) equation [2], were generalized to various cases, such as discrete [3], non-commutative [4],
super/supersymmetric etc., which extensively widen the scope of integrability. This paper is concerned with supersymmetric integrable
equations.

During the past four decades, a number of classical integrable systems have been embedded in their supersymmetric counterparts,
and as results the supersymmetric sine-Gordon equation [5], the supersymmetric KdV equation [6] and the supersymmetric nonlinear
Schrédinger equation [7] have been constructed. Besides these prototypes, some classical non-evolutionary integrable equations, like the
Hunter-Saxton equation [8] and the Camassa-Holm equation [9], were also successfully generalized to superspaces through different
approaches. For instance, even and odd supersymmetric Hunter-Saxton equations were derived out as negative flows of supersymmetric
Harry Dym hierarchies [10,11], and the even supersymmetric Hunter-Saxton equation was also shown to describe the geodesic flow on
the space of superdiffeomorphisms of the circle that leaves a point fixed endowed with a right-invariant metric [12]. Some unequivalent
supersymmetric Camassa-Holm equations were constructed via deformation of N = 2 superconformal algebra [13] or geodesic equations
on superconformal group [14], but as far as we know, their integrability is still not clear.

The method of tri-Hamiltonian duality, developed by Fokas, Fuchssteiner, Olver and Rosenau, is an effective tool to generate new
bi-Hamiltonian systems from known ones, and produces many integrable equations of Camassa-Holm type. Indeed, it is Fuchssteiner
[15] who first presented the Camassa-Holm equation (up to a misprint) by means of recombining the Hamiltonian operators of the
KdV equation. This method traces back to Fokas and Fuchssteiner [16] and has been elaborated [17,18]. In particular, Olver and Rosenau
made further contribution to this method and various examples were considered [19]. New systems constructed in this way are termed
as dual systems of the original ones. In the same year, Schiff constructed the zero-curvature representations for those dual equations
[20]. The method of tri-Hamiltonian duality was adopted by Popowicz to N = 2 supersymmetric KdV equations, and generated N = 2
supersymmetric Camassa-Holm equations [21] admitting bi-Hamiltonian structures.

In this paper, we manage to construct the dual system of a supersymmetric bi-Hamiltonian system, which is equivalent to the super-
symmetric two boson (sTB) system, and present a zero-curvature representation for this dual system in the scheme of tri-Hamiltonian
duality. The sTB system, proposed by Brunelli and Das [22], serves as a supersymmetric extension of the dispersive water wave equation
[23,24], also referred to as Kaup-Borer or classical Boussinesq system in literatures, and is formulated as
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b0t = —doxx + (D(Do)?) + 201 x,
D1t = d1,0x + 2((Do) 1),

where ¢; = ¢i(x,0,t)(i =0,1) are fermionic (Grassmann odd) superfields depending on superspatial variables (x,#) and temporal vari-
able t, and D denotes the superderivative defined as D = dy + 6dx. Furthermore, Brunelli and Das have shown that the sTB system is a
bi-Hamiltonian system
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where both Hamiltonian operators are
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and corresponding Hamiltonians are given by

Ha=— [ @oopndeds. Ha= [ ((Doo.0 — D0 = (Do) rdsao.

Interestingly as stated by Liu [25], the sTB system could be reformulated with two local Hamiltonian operators by introducing new
variables (u, x) = (—(D¢o), ¢1). Under this change of variables, the sTB equation is transformed to

Up = —Uxx — 2Uly — 2(D X )x, )
Xt = Xoox — 2(UY)x,

and Hamiltonian operators K1 and K, are respectively converted to

B — By — —2D3 —2x —(Du) —98%*—9u—xD
=\ \o o) ™7\ 82—us+py —x0—dx ’

where the superfield u is bosonic, while the other superfield x is fermionic. It is worth noting that both Hamiltonian operators 37 and
B, are local. The system (1) will be also referred to as the sTB system hereinafter, and its dual system and zero-curvature representation
will be established.

The paper is organized as follows. In section 2, a new pair of compatible Hamiltonian operators is presented by rearranging 31 and B,
and generates the dual system of the sTB system (1). Inferred from this duality, we formulate a zero-curvature representation for the
dual sTB system in section 3. Section 4 is devoted to explain the relation between the dual sTB system and a N = 2 supersymmetric
Camassa-Holm equation, which first appeared as a dual system of the SKdV4 equation [21], and later was rediscovered by Lenells and
Lechtenfeld as the Euler equation on superconformal algebra [26]. Conclusions will be given in the last section.

2. The dual sTB system

Decomposing the Hamiltonian operator B, by extracting leading terms, we obtain

(09 B _ -2D3 —3? 5@ _ (—2x —(Du) —du—xD
=\ s o) 72 7\ 3 0 )0 72 T\ —ud+Dyx —xd—-adx)
About the triplet B, Bé” and 852) , we have

Proposition 1. For arbitrary constants a, b and c, the skew-symmetric operator

£=aB; +bB" + cBY

is a Hamiltonian operator.

Proof. Since the operator £ is obviously skew-symmetric, one just need to show that the Poisson bracket defined by £ satisfies the super
Jacobi identity, or equivalently to show that

(o, ETEBY) + (B E'[EY ) + (v, E'[E]B) =0

for arbitrary 2-dimensional testing vectors «, § and y.
Because all calculations are straightforward, details are omitted. O

Various corollaries may be inferred from Proposition 1. On the one hand, when b = c it manifests the compatibilities of Hamiltonian
operators 31 and B,. On the other hand, if a =b, then we have a new pair of compatible Hamiltonian operators, i.e.

Bi=B+ Bél) and B, = Béz),

on which the dual system of the sTB equation (1) would be established.
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