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We present a brief derivation of the kinetic equation describing the secular evolution of point vortices in 
two-dimensional hydrodynamics, by relying on a functional integral formalism. We start from Liouville’s 
equation which describes the exact dynamics of a two-dimensional system of point vortices. At the 
order 1/N , the evolution of the system is characterised by the first two equations of the BBGKY 
hierarchy involving the system’s 1-body distribution function and its 2-body correlation function. Thanks 
to the introduction of auxiliary fields, these two evolution constraints may be rewritten as a functional 
integral. When functionally integrated over the 2-body correlation function, this rewriting leads to a 
new constraint coupling the 1-body distribution function and the two auxiliary fields. Once inverted, 
this constraint provides, through a new route, the closed non-linear kinetic equation satisfied by the 
1-body distribution function. Such a method sheds new lights on the origin of these kinetic equations 
complementing the traditional derivation methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There exist beautiful analogies between stellar systems and 
two-dimensional (2D) vortices [1]. Stellar systems and 2D point 
vortices undergo two successive types of relaxation. They first 
reach a quasistationary state (QSS) due to a process of violent 
collisionless relaxation. The concept of violent relaxation was in-
troduced by Lynden-Bell [2] in the case of stellar systems described 
by the Vlasov equation and by Miller [3] and Robert and Som-
meria [4] in the case of 2D vortices described by the 2D Eu-
ler equation (see [5] for a description of the close link between 
these two theories). These QSSs correspond to galaxies in astro-
physics [6] or to large scale vortices (like Jupiter’s great red spot) 
in geophysical and astrophysical flows [7]. On a longer (secular) 
timescale, “collisions”1 between stars or between point vortices 
come into play and drive the system towards a statistical equilib-
rium state described by the Boltzmann distribution. This statistical 
equilibrium state was conjectured by Ogorodnikov [8] in the case 
of stellar systems and by Onsager [9,10] and Montgomery and 

* Corresponding author.
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1 These “collisions” do not correspond to physical collisions but rather to – pos-
sibly distant – encounters between the particles. They account for fluctuations due 
to finite-N effects, i.e., for the granularity of the system.

Joyce [11] in the case of 2D point vortices. Actually, for collisional 
stellar systems such as globular clusters the relaxation towards the 
Boltzmann statistical equilibrium state is hampered by the evap-
oration of stars [12] and by the gravothermal catastrophe [13,14]. 
In the case of 2D point vortices, the statistical equilibrium state 
may present the peculiarity to have a negative temperature as first 
noted by Onsager [9].

To understand the dynamical evolution of these systems, we 
need to develop a kinetic theory. The collisionless evolution of 
stellar systems is described by the Vlasov [15] equation that was 
first written by Jeans [16] in astrophysics.2 The collisional evolu-
tion of stellar systems is usually described by the Fokker–Planck 
equation introduced by Chandrasekhar [17] or by the Landau [18]
equation. These equations rely on a local approximation (as if 
the system were spatially homogeneous) and neglect collective ef-
fects (i.e., the dressing of the stars by their polarisation cloud). 
A gravitational Landau equation that takes into account spatial in-
homogeneity through the use of angle-action variables has been 
introduced in [19–21] and a gravitational Balescu–Lenard equation 
that takes into account spatial inhomogeneity and collective effects 

2 The kinetic theories of stellar systems and neutral Coulombian plasmas have 
been developed in parallel (and often independently) by astrophysicists and plasma 
physicists.
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has been introduced in [22,23]. These equations have recently been 
applied to stellar discs in [24–26].

Exploiting the analogy between 2D vortices and stellar sys-
tems, a kinetic theory of point vortices has been elaborated by 
Chavanis [27]. The collisionless evolution of point vortices is de-
scribed by the 2D Euler equation. When collective effects are ne-
glected, the collisional evolution of point vortices is described by 
a Landau-type equation [27–29]. A Balescu–Lenard-type equation 
taking collective effects into account has been derived in [30,31]
for an axisymmetric distribution of point vortices. It is equivalent 
to the one derived in [32] in the similar context of non-neutral
plasmas.

One can understand the collisional evolution of stellar systems 
and 2D point vortices heuristically by analogy with the Brown-
ian motion. A star has a diffusive motion due to the fluctuations 
of the gravitational force but it also experiences a dynamical fric-
tion [33]. Similarly, a point vortex has a diffusive motion due to 
the fluctuations of the velocity field and also experiences a system-
atic drift [27]. The diffusion can be understood by considering the 
statistics of the gravitational force created by a random distribution 
of stars [34] or the statistics of the velocity created by a random 
distribution of point vortices [35]. The dynamical friction experi-
enced by a star and the systematic drift experienced by a point 
vortex can be understood from a polarisation process and a lin-
ear response theory (see [36] for stellar systems and [37] for point 
vortices). The friction and drift coefficients are related to the dif-
fusion coefficient by a form of Einstein relation. Further analogies 
between the kinetic theory of stellar systems, 2D vortices, and sys-
tems with long-range interactions in general are discussed in [20].

There are many methods to derive kinetic equations for systems 
with long-range interactions. The most popular are the BBGKY 
hierarchy based on the Liouville equation (see [38,39] for plas-
mas, [40–42,22,21] for stellar systems and [29,31] for point vor-
tices), the quasilinear theory based on the Klimontovich equation 
(see [43] for plasmas, [44,23] for stellar systems and [32,30,29] for 
point vortices), and the projection operator technique also based 
on the Liouville equation (see [45] for stellar systems and [27]
for point vortices). One can also derive kinetic equations from 
a field theory. This method was introduced by Jolicoeur and Le 
Guillou [46] to derive the homogeneous Balescu-Lenard equation 
of plasma physics. Recently, this method was generalised to stel-
lar systems in [47] to derive the inhomogeneous Landau equation. 
Owing to the analogy between stellar systems and 2D point vor-
tices, it is of interest to show how this method can be used to 
derive the Landau equation for axisymmetric point vortices.

The present letter is organised as follows. Section 2 presents a 
brief derivation of the relevant BBGKY hierarchy in the context of 
the kinetic theory of 2D point vortices. Section 3 details the func-
tional integral formalism introduced in [46] and applied in [47] for 
inhomogeneous long-range systems. Section 4 illustrates how this 
formalism may be used to obtain the Landau equation describing 
the secular evolution of axisymmetric 2D point vortices. Section 5
discusses the limitations of our approach and its possible exten-
sions. Finally, section 6 wraps up.

2. Derivation of the BBGKY hierarchy

In this section, we briefly recover the evolution equations de-
scribing the dynamics of point vortices and the associated BBGKY 
hierarchy. We consider a 2D system made of N point vortices of 
individual circulation γ = �tot/N . The individual dynamics of these 
vortices is entirely described by the Kirchhoff–Hamilton equations 
which read [48]:

γ
dxi

dt
= ∂ H

∂ yi
; γ

dyi

dt
= −∂ H

∂xi
, (1)

where we introduced the coordinates r = (x, y), as well as the 
Hamiltonian H = γ 2 ∑

i< j ui j , where uij = −1/(2π) ln(|ri − r j|)
is the potential of interaction between two vortices. We may 
now introduce the N-body probability distribution function (PDF) 
P N(r1, ..., rN , t), which describes the probability of finding the vor-
tex 1 at position r1, vortex 2 at position r2, etc. We normalise P N
such that 

∫
dr1...drN P N(r1, ..., rN , t) = 1. The evolution of P N is 

then governed by Liouville’s equation which reads

∂ P N

∂t
+ γ

N∑
i=1

V i · ∂ P N

∂ri
= 0 , (2)

where we defined the velocity V i = ∑
j �=i V i j = ∑

j �=i −ez × ∂uij/

∂ri . Here, V i j denotes the exact velocity induced by the vortex j
on the vortex i. We now introduce the reduced distribution func-
tions (DF) fn as

fn(r1, ..., rn, t) = γ n N!
(N − n)!

∫
drn+1...drN P N(r1, ..., rN , t) .

(3)

Integrating equation (2) w.r.t. (rn+1, ..., rN ), one obtains a BBGKY-
like hierarchy of equations as

∂ fn

∂t
+

n∑
i=1

n∑
k=1,k �=i

γ V ik · ∂ fn

∂ri
+

n∑
i=1

∫
drn+1 V i,n+1 · ∂ fn+1

∂ri
= 0 .

(4)

We are interested in the contributions arising from the correlations 
between particles, and therefore introduce the cluster representa-
tion of the DF. Indeed, we define the 2- and 3-body correlation 
functions g2 and g3 as

f2(r1, r2) = f1(r1) f1(r2) + g2(r1, r2) ,

f3(r1, r2, r3) = f1(r1) f1(r2) f1(r3)

+ f1(r1)g2(r2, r3) + f1(r2)g2(r1, r3)

+ f1(r3)g2(r1, r2) + g3(r1, r2, r3) . (5)

It is then straightforward to check that one has the normalisations∫
dr1 f1(r1) = γ N ;

∫
dr1dr2 g2(r1, r2) = −γ 2N ,

∫
dr1dr2dr3 g3(r1, r2, r3) = 2γ 3N . (6)

Since the individual circulation scales like γ ∼ 1/N , one immedi-
ately has | f1| ∼ 1, |g2| ∼ 1/N , and |g3| ∼ 1/N2. In order to con-
sider quantities of order 1, we introduce the system’s 1-body DF 
F , and 2-body correlation function C as

F = f1 ; C = g2

γ
. (7)

When truncated at the order 1/N , one can easily show that the 
first two equations of the hierarchy from equation (4) become

∂ F

∂t
+

[∫
dr2 V 12 F (r2)

]
· ∂ F

∂r1
+ γ

∫
dr2 V 12 · ∂C(r1, r2)

∂r1
= 0 ,

(8)

and

1

2

∂C(r1, r2)

∂t
+

[∫
dr3 V 13 F (r3)

]
· ∂C(r1, r2)

∂r1

+ V 12 · ∂ F

∂r1
F (r2) +

[∫
dr3 V 13C(r2, r3)

]
· ∂ F

∂r1

+ (1 ↔ 2) = 0 , (9)



Download English Version:

https://daneshyari.com/en/article/1866686

Download Persian Version:

https://daneshyari.com/article/1866686

Daneshyari.com

https://daneshyari.com/en/article/1866686
https://daneshyari.com/article/1866686
https://daneshyari.com

