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The grand canonical formalism is employed to study the thermodynamic structure of a model displaying 
a quantum phase transition when studied with respect to the canonical formalism. A numerical survey 
shows that the grand partition function diverges following a power law when the interaction parameter 
approaches a limiting constant. The power-law exponent takes a distinctive value when such limiting 
constant coincides with the critical point of the subjacent quantum phase transition. An approximated 
expression for the grand partition function is derived analytically implementing a mean field scheme and 
a number of thermodynamic observables are obtained. The system observables show signatures that can 
be used to track the critical point of the underlying transition. This result provides a simple fact that can 
be exploited to verify the existence of a quantum phase transition avoiding the zero temperature regime.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The observation of quantum-interference effects in many-body 
systems is often deterred by the very short coherence times dis-
played by quantum pure states in nature. This affects in particular 
cooperative states resulting from interaction-dominated phases in 
many-body systems. These states have important applications in 
quantum computation and nanoelectronics because interaction is 
key to develop control mechanisms. In contrast to pure states, 
mixed states are less prone to be demolished by decoherence 
[1], especially when they correspond to equilibrium states because 
their entropies are maximal and the system cannot loss any more 
information to the environment. As a result, it is reasonable to as-
sume that the observation of specific effects in many-body systems 
through thermodynamic states is feasible, even practical, as long as 
it be possible to easily keep the system in equilibrium.

Quantum Phase Transitions (QPTs) are physical processes aris-
ing from a change in the ground state structure of a system as a 
parameter crosses a transition- or critical-point [2]. These transi-
tions occur at zero temperature and they are strongly influenced 
by quantum correlations. In fact, it is known that the amount of 
entanglement present in a system is maximal at, or close to, the 
critical point of a second order QPT [3]. The universality class of 
a QPT is determined by the power law exponents that define the 
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scaling behavior of characteristic variables in the vicinity of the 
critical point. Recently, there has been interest in knowing how 
correlations, either classical or quantum, behave at finite temper-
ature in models showing well understood QPTs [4,5]. These inves-
tigations have been made using canonical ensemble theory: the 
system is in thermodynamic equilibrium with a bath at fixed tem-
perature and the number of particles is fixed. In contrast, applica-
tions of the grand-canonical ensemble theory to the same kind of 
systems are, to the best of the authors’ knowledge, not available 
so far. The element that is added in the grand canonical formu-
lation is the notion of fluctuations of the number of particles. In 
this case an open quantum system interacts with a bath in such a 
way that not only energy but also particles can be exchanged. This 
additional consideration might better describe the conditions en-
countered in some low-temperature- and solid-state-experiments. 
Let us consider a system governed by the following Hamiltonian

Ĥ M = â†
1â2 + â†

2â1 − λ

M

(
â†

1â1â†
1â1 + â†

2â2â†
2â2

)
. (1)

The operators that describe the Hamiltonian follow bosonic com-
muting relations [â1, ̂a

†
1] = [â2, ̂a

†
2] = 1 and [â1, ̂a2] = 0. Symbols M

and λ represent the number of particles and the intensity of the 
interaction among bosons respectively. By definition Ĥ0 = 0. The 
Hamiltonian has been normalized so that λ is dimensionless and 
the energy unit is half the energy difference between the eigenen-
ergies of Ĥ1. In this letter only the case λ > 0 is considered. It is 
possible to change the sign of the single particle term so that it 
better resembles a kinetic energy contribution applying a unitary 
transformation producing â1 → iâ1 and â2 → −iâ2. This scheme 
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can be seen as a simple model describing a system of cold atoms 
tunneling between symmetric adjacent wells and undergoing at-
tractive interactions [6,7]. It is known that in actual experiments 
both the double-well profile and the interaction intensity can be 
controlled to a great degree [8]. Usually, the confining profile is re-
alized using counter-propagating laser beams that form a periodic 
super-lattice while the interaction can be tuned applying a mag-
netic field near a Feshbach resonance [9]. In numerical studies it 
is useful to exploit the fact that Ĥ M commutes with the following 
operators,

M̂ = â†
1â1 + â†

2â2, �̂ = e
i π

2

(
â†

1â2+â†
2â1

)
. (2)

These commutation properties imply that the eigenstates of (1)
display fixed number of particles and, for non-degenerate spec-
tra, parity. This latter symmetry emerges as a consequence of the 
invariance of the Hamiltonian under the swap of labels (wells) 
1 ↔ 2. The system behavior is determined by the trade-off be-
tween hopping and attractive interaction. Hamiltonian (1) can 
be written in terms of angular momenta through the following 
Schwinger transformation,

Ĵ z = â†
1â2 + â†

2â1

2
, Ĵ x = â†

1â1 − â†
2â2

2
. (3)

Inserting these identities in Eq. (1) and after a few arrangements 
we arrive to,

2 Ĵ z − 2λ

M
Ĵ 2

x − Mλ

2
, (4)

which corresponds to a particular case of the Lipkin–Meshkov–
Glick (LMG) model [10]. This model undergoes a QPT at λc = 1 and 
a phase transition at finite temperature βc = tanh−1 1

λ2 . The Hamil-
tonian form shown in Eq. (4) has been extensively studied with 
reference to, among many others, its scaling behavior [11–13], en-
ergy spectrum [14], correlations at finite temperature [4] and ap-
plications to quantum metrology [15]. If the angular momenta are 
written as sums of spins, Ĵ x,z = 1

2

∑M
j=1 σ̂ x,z

j , where σ̂ x,z are Pauli 
matrices, the model becomes

M∑
j=1

σ̂ z
j − λ

M

M∑
j=1

j−1∑
k=1

σ̂ x
k σ̂ x

j − Mλ. (5)

In this notation, and up to a constant factor, the model is known as 
the infinite range Ising model because the interaction among spins 
is completely homogeneous with respect to the spin index. It is 
worth mentioning that Hamiltonian (1) is not completely equiva-
lent to either Hamiltonian (5) or Hamiltonian (4), as can be seen 
by comparing their respective Hilbert space dimensions. Indeed, 
the sums of spins give rise to various irreducible representations 
of Hamiltonian (4) corresponding to different values of total angu-
lar momentum. The representation with the biggest total angular 
momentum corresponds to Hamiltonian (1). It can be shown that, 
up to an additive constant proportional to M , Hamiltonian (1) is 
the bosonic second quantization of Hamiltonian (5) and as such it 
is spanned by the symmetric states of the spin basis. This affects 
the density of states and eventually derives in the fact that Hamil-
tonians (4) and (5) exhibit a QPT as well as a phase transition at 
finite temperature, while Hamiltonian (1) displays only a QPT. Such 
a QPT can be studied by assuming that the ground state is given 
as follows [6]

|G(θ)〉 = b̂† M |0〉√
M! , b̂† = â†

1 cos θ − â†
2 sin θ, (6)

where θ is bounded to the interval [0, π ] in order to avoid redun-
dancies. The angle θ takes the value that minimizes the energy

EG = Minθ 〈G(θ)|Ĥ M |G(θ)〉. (7)

After some direct calculations we obtain to leading order in M

if λ < 1, θ∗ = π

4
and EG = −M

(
1 + λ

2

)
. (8)

Otherwise

if λ ≥ 1, θ∗
1 = 1

2
arcsin

(
1

λ

)
or θ∗

2 = π

2
− θ∗

1 , (9)

and EG = −M
(
λ + 1

2λ

)
. Canonical ensemble theory dictates that 

the statistical state becomes |G(θ∗)〉 for λ < 1 and

1

2

(|G(θ∗
1 )〉〈G(θ∗

1 )| + |G(θ∗
2 )〉〈G(θ∗

2 )|) , (10)

for λ ≥ 1. The QPT is characterized by a structural change in the 
spectrum of the Hamiltonian, which goes from a gaped phase with 
non-degenerate energy levels for λ < 1, to a gapless phase with a 
double degeneration of every level for λ ≥ 1.1 Such a change in the 
density of states takes place only in the limit M → ∞ (the ther-
modynamic limit) and is marked by a discontinuity at λ = 1 in 
the second derivative of the rescaled free energy.2 As the free en-
ergy is continuous at the critical point, the transition is classified 
as a second order QPT. Neither |G(θ∗

1 )〉 nor |G(θ∗
2 )〉 are invariant 

under parity transformations, because they display different occu-
pation numbers at each side of the double well. Contrariwise, both 
state (10) and |G(θ∗)〉 are invariant, and as such it can be said that 
symmetry is preserved across the critical point as long as the sys-
tem remains in thermodynamic equilibrium so that the transition 
be reversible. The general purpose of this work is to analyze the 
thermodynamic properties of a system governed by Hamiltonian 
(1) using the grand canonical formalism, i.e., assuming that the 
number of particles is not fixed but subject to statistical fluctua-
tions determined by the characteristic conditions of a surrounding 
bath. In particular, it is of interest to examine whether signatures 
of the aforementioned QPT can be in any way seen in the resulting 
framework. The underlying intention is to establish a connection of 
physical significance between the properties of the system in the 
thermodynamic limit and its finite size structure as a whole.

2. Grand canonical approach

The thermodynamics of the model is determined by the grand 
canonical partition function,

� =
∞∑

M=0

T r
(

e−β(Ĥ M−μM̂)
)

, (11)

where β and μ indicate the inverse temperature and chemical 
potential respectively. For a set of parameters λ, μ and β , a cor-
responding state in thermodynamic equilibrium is well defined as 
long as � converges to a positive real number. One way of ensur-
ing convergence is by requiring that the terms having large M in 
(11) go to zero fast enough as M goes to infinity. A convergence 
analysis can be done using the fact that the system’s ground state 
energy in the thermodynamic limit EG is known. It is in this way 
found that in order to guarantee the convergence of � the interac-
tion parameter must fulfill λ < λD , where

λD = −2(1 + μ) → μ = −
(

1 + λD

2

)
, (12)

1 Here only the ground state degeneration is shown. Numerical simulations show 
that this also happens to the rest of the spectrum.

2 At zero temperature the free energy is just f = EG .
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