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We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether 
they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of 
thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado 
entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-
vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the 
Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results 
are also supported by the one-dimensional Ising model with no external field.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The recent progress in the use of information-theoretic en-
tropies to construct a generalized statistical mechanics follows two 
main routes: the former approach uses the definitions of Tsallis [1], 
Rényi [2], Kaniadakis [3] entropies so that the non-equilibrium sta-
tionary metastable cases are also considered within the context 
of the statistical mechanics [4]. Along this direction, many impor-
tant applications were reported in the fields of quantum informa-
tion [5–8], econophysics [9,10], high energy phenomenology [11], 
black hole thermodynamics [12,13] and the rigid rotators in mod-
eling the molecular structure [14,15]. All these entropy definitions 
share the common feature that they yield distributions of inverse 
power law form under the entropy maximization [1,3,16,17]. The 
latter approach consists of using the Shannon entropy with time-
dependent probabilities thereby forming the field of stochastic 
thermodynamics [18], opening up the possibility for the treatment 
of the physical systems at the nanoscale [19–21].

A third alternative was recently presented by relying on the 
fractional calculus so that Ubriaco [22] and Machado [23] pro-
vided two alternative definitions. The approach of Ubriaco [22] is 
based on replacing the ordinary derivative yielding Shannon en-
tropy with the fractional Riemann–Liouville derivative. Machado 
[23] on the other hand introduces his entropy through a fractional 
generalization of the information content whose average yields the 
Machado entropy [23]. These novel entropy expressions are then 
applied to numerous cases including the study of the financial time 
series and stock market index [23,24], the disclosing of the rela-
tion between DNA and the fractional Brownian motion [25], image 
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splicing [26], and a new metrics of the emergence in the field of 
complexity [27].

However, whether these new entropy definitions based on frac-
tional calculus is valid for a generalized statistical mechanics have 
not been tested yet apart from the thermodynamic stability of the 
entropy introduced by Ubriaco [22]. In this context, the third law 
of thermodynamics has been introduced as a test for the gener-
alized entropies [28], since it should be satisfied for any suitable 
entropy expression independent of the Hamiltonian. The method-
ology in Ref. [28] is to express the third law in terms of micro-
probabilities by assuming that the physical system has ordered 
microscopic energies Eλ where λ = 0, 1, ..., N with no degeneracy. 
The state with λ = 0 is then the ground state. The probability of 
the system to be in the state λ is given by pλ where 

∑
λ pλ = 1

i.e., assuming that the normalization is carried out. Since p0 =
1 − ∑

n pn due to the normalization with n = 1, ..., N , any function 
f of the micro-probabilities satisfies the relation ∂ f (p0)

∂ pn
= − ∂ f (p0)

∂ p0
. 

Then, by setting the ground state probability p0 to unity, one real-
izes the situation that only the ground state is populated while all 
the remaining probabilities pn ’s are null. The contribution of the 
nth energy level to the inverse temperature β as βn is given by

βn = ∂ S

∂ pn

(
∂U

∂ pn

)−1

, (1)

where β = ∑
n βn . Then one checks whether this inverse temper-

ature attains infinity when {pn} → 0 as p0 = 1 showing that only 
the ground state is occupied while all the other states are not. Note 
that the third law dictates that the diverging temperature occurs if 
and only if when the entropy vanishes [28]. Before considering the 
Ubriaco and Machado entropies, we also note that the Tsallis en-
tropy has recently been shown to conform to the third law for its 
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whole interval of convergence while the Renyi entropy satisfies the 
third law of thermodynamics only in the region where it is neither 
concave nor convex [29].

2. The third law of thermodynamics: Ubriaco and Machado 
entropies

The Shannon entropy (having set the Boltzmann constant to 
unity) can be defined through

S = lim
t→−1

d

dt

∑
λ

p−t
λ = −

∑
λ

pλ ln pλ. (2)

Considering this equality as the point of departure, Ubriaco 
introduced the fractional entropy by relying on the Riemann–
Liouville definition of the fractional derivative as

Sq = lim
t→−1

d

dt

(
−∞Dq−1

t

∑
λ

e−t ln pλ

)
, (3)

where the integro-differential operator −a Dq−n
t reads

a Dq−n
t f (t) = 1

� (n − q)

t∫
a

dt′ f
(
t′)

(t − t′)1+q−n
(4)

so that

Sq = lim
t→−1

d

dt

1

� (1 − q)

∑
λ

t∫
−∞

dt′ e−t′ ln pλ

(t − t′)q . (5)

Performing the integration and taking the limit t → −1 [22], 
one obtains the fractal entropy as

Sq =
∑
λ

(− ln pλ)
q pλ, (6)

where 0 ≤ q ≤ 1. In the limit q → 1, the fractal entropy Sq ap-
proaches the Shannon entropy S . We also note that the frac-
tal entropy Sq is non-additive and thermodynamically stable for 
0 < q ≤ 1 [22].

Using Eq. (6), we can calculate the following expression

∂ Sq

∂ pn
= (− ln pn)

q − q (− ln pn)
q−1 − (− ln p0)

q + q (− ln p0)
q−1 .

(7)

Since the system energy is given through U = ∑
λ pλEλ , we 

have

∂U

∂ pn
= En − E0, (8)

which is independent of the index q. Using Eqs. (7) and (8), one 
can then calculate βn in Eq. (1) as

βn = (− ln pn)
q − q (− ln pn)

q−1 − (− ln p0)
q + q (− ln p0)

q−1

(En − E0)
.

(9)

Having substituted p0 = 1, we obtain

lim
pn→0

βn = lim
pn→0

(− ln pn)
q − q (− ln pn)

q−1

(En − E0)
+ ∞ = ∞ (10)

for the interval 0 < q ≤ 1. This result shows that the fractal entropy 
of Ubriaco satisfies the third law of thermodynamics exactly in the 
region where it is thermodynamically stable i.e. 0 < q ≤ 1 [22].

Fig. 1. The Ubriaco inverse temperature β versus p+ for the one-dimensional Ising 
model with q = 0.3, q = 0.5 and q = 0.6.

To illustrate our results, we consider one dimensional Ising 
model with periodic boundary conditions, namely, σi = σi+1, with 
no external field

H = − J
∑

i

σiσi+1 (11)

where J is the interaction strength and the summation is taken 
over the number of spins whose values are ±1. The mean energy 
is given by U = J (p+ − p−) where p+ (p−) denotes the proba-
bility of the random pair of neighboring spins being anti-parallel 
(parallel). Note that the mean energy can also be written as U =
Jp+ − J (1 − p+) due to the normalization. The energies of the 
anti-parallel and parallel cases are E1 = + J and E0 = − J , respec-
tively. In terms of the notation adopted before, the ground state 
probability p0 corresponds to p− while the excited state p1 (with 
n = 1) corresponds to p+ . Then, ∂U

∂ pn
i.e. ∂U

∂ p+ in Eq. (1) is equal 
to 2 J for the one-dimensional Ising model. One can then calcu-
late the entropy using only the probability p+ , since p+ = 1 − p−
due to the normalization. Setting 2 J = 1 without loss of generality, 
we plot the inverse temperature β and the Ubriaco entropy Sq in 
Figs. 1 and 2, respectively. From these figures, one can see that the 
Ubriaco entropy Sq is zero when p+ → 0 (i.e. when p− → 1 im-
plying that only the ground state is populated) exactly at the point 
where the inverse temperature β attains the limit +∞. Moreover, 
just like the Boltzmann–Gibbs entropy, the Ubriaco entropy Sq is 
also zero when p+ → 1 (i.e. when p− → 0 implying that only the 
excited state is populated) where β → −∞. In accordance with 
the third law of thermodynamics, the Ubriaco entropy is non-zero 
everywhere else.

Next, we now consider the Machado entropy [23] which is 
given by

Sq =
∑
λ

− p1−q
λ

� (1 + q)
[ln pλ + � (1) − � (1 − q)] (12)

for −1 ≤ q ≤ 1 where the gamma and digamma functions are de-

fined as � (x) ≡ ∫ ∞
0 tz−1e−tdt and � (x) ≡

d�(x)
dx

�(x) , respectively. When 
the parameter q in the Machado entropy is set to zero, one re-
covers the ordinary Shannon entropy. One can then calculate its 
partial derivative as

∂ Sq

∂ pn
= p−q

n

� (1 + q)
[−1 + (q − 1) (ln pλ + � (1) − � (1 − q))]

(13)

so that we obtain
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