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In this work we study a 3-state (+1, −1, 0) opinion model in the presence of noise and disorder. 
We consider pairwise competitive interactions, with a fraction p of those interactions being negative 
(disorder). Moreover, there is a noise q that represents the probability of an individual spontaneously 
change his opinion to the neutral state. Our aim is to study how the increase/decrease of the fraction 
of neutral agents affects the critical behavior of the system and the evolution of opinions. We derive 
analytical expressions for the order parameter of the model, as well as for the stationary fraction of 
each opinion, and we show that there are distinct phase transitions. One is the usual ferro–paramagnetic 
transition, that is in the Ising universality class. In addition, there are para-absorbing and ferro-absorbing 
transitions, presenting the directed percolation universality class. Our results are complemented by 
numerical simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of dynamics of opinion formation is nowadays a hot 
topic in the Statistical Physics of Complex Systems, with a con-
siderable amount of papers published in the last years (see [1–4]
and references therein). Even simple models can exhibit an in-
teresting collective behavior that emerges from the microscopic 
interaction among individuals or agents in a given social network. 
Usually those models exhibit nonequilibrium phase transitions and 
rich critical phenomena, which justifies the interest of physicists in 
the study of opinion dynamics [1–11].

In the last few years, a recent attention has been done to the ki-
netic exchange opinion models (KEOM) [7–9,12], inspired in mod-
els of wealth exchange [13–15]. The LCCC model was the first one 
to consider kinetic exchanges among pairs of agents that present 
continuous states (opinions) [7]. In this case, the model presents a 
continuous symmetry-breaking phase transition. After that, some 
extensions were analyzed for continuous and discrete opinions. 
For example, the inclusion of competitive interactions [8], three-
agents’ interactions [12], dynamic self-confidence [16], presence of 
inflexible agents [17], and others, similarly to was done previously 
in other opinion dynamics, like the Galam’s models [18,19]. In all 
these extensions the critical behavior of the system was exten-
sively analyzed.
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Dynamics of decision-making has been treated in several works 
in Psychology [20,21] and Neuroscience [22–24]. For the dynamics 
of opinion formation, we find many models by physicists dedicated 
to explain the decision-making process or the exchange of opinion 
through interactions among agents [4]. The mechanisms consider 
kinetic exchanges (KEOM [7–9,12]), imitation (voter model [25], 
Sznajd model [26]) or the power of local majorities (majority-rule 
model [18], majority-vote model [27]), among others. Nevertheless, 
the inclusion of noise and disorder can be considered in such mod-
els [1–4].

Usually discrete opinion models consider two distinct positions 
or opinions o = ±1 (yes or no, democrat or republican, candidate A 
or candidate B). They can be enriched with the inclusion of a third 
state, o = 0, representing neutral state or indecision. Indecision is a 
current and rising phenomenon which affects both recent and con-
solidated democracies [28]. Many reasons can lead an individual to 
become neutral or undecided, for example it can be associated to 
an anticonformism/nonconformism to the proposals on both sides 
of the debate. The impact of indecision/neutrality was considered 
recently in many works [8,12,17,28–33].

In this work we consider a discrete KEOM in the presence of 
noise and disorder. In addition to pairwise random interactions, 
we introduce an indecision noise that significantly affects the dy-
namics of the system. Our aim is to analyze the critical behavior 
of the model. In this case, based on analytical and numerical re-
sults, we found three distinct phase transitions, namely the usual 
ferro–paramagnetic transition, and two distinct transitions to an 
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absorbing state: from the ferromagnetic state and from the param-
agnetic one.

2. Model and results

We considered a KEOM [7,8,12] with competitive positive/neg-
ative interactions. Our artificial society is represented by N indi-
viduals in a fully-connected graph. Each agent i can be in one of 
three possible opinions at each time step t , i.e., oi(t) = +1, −1 or 
0. This general scheme can represent a public debate with two 
distinct choices, for example yes and no, and also including the un-
decided/neutral state. The following microscopic rules control our 
model:

(1) we choose two agents at random, say i and j, in a way that j
will try to persuade i;

(2) with probability 1 − q, the opinion of agent i in the next 
step t + 1 is updated according to the kinetic rule oi(t + 1) =
sgn[oi(t) + μi jo j(t)];

(3) with probability q, the agent i spontaneously change to the 
neutral state, i.e., oi(t + 1) = 0.

In the above dynamic rule, sgn(x) is the signal function defined 
such that sgn(0) = 0. This is usual in KEOM, in order to keep all 
the agents’ opinions in one the three possible ones, +1, −1 or 0
[8,12,17]. The pairwise couplings μi j are quenched random vari-
ables1 that follow the discrete probability distribution F (μi j) =
p δ(μi j + 1) + (1 − p) δ(μi j − 1). In other words, the parameter p
stands for the fraction of negative interactions. As discussed in pre-
vious works [8,17], the consideration of such negative interactions 
produces an effect similar to the introduction of Galam’s contrari-
ans in the population [18,34]. In addition, competitive interactions 
were also considered for the modeling of coalition forming [35]. 
The probability q acts as a noise in the system, and it allows an 
autonomous decision of an individual to become neutral [5,36]. It 
can be viewed as the volatility of some individuals, who tend to 
spontaneously change their choices. In a two-candidate election, if 
a given individual does not agree with the arguments of support-
ers of both sides, he/she can decide to not vote for any candidate, 
and in this case he/she becomes neutral. In this case, this inde-
cision noise must be differentiated/disassociated from other usual 
kinds of noises because, unlike the others, it privileges only the 
neutral opinion. As a recent example, in the 2012 USA election 
Barack Obama and Mitt Romney disputed for the election for pres-
ident as the main candidates. It was reported that two months out 
from election day, nearly a quarter of all registered voters are ei-
ther undecided about the presidential race or iffy in their support 
for a candidate, as indicated by polls [37].

For q = 0, i.e., in the absence of noise, the model undergoes a 
nonequilibrium order–disorder (or ferro–paramagnetic) transition 
at a critical fraction pc = 1/4 [8]. In the ordered ferromagnetic 
phase, one of the extreme opinions +1 or −1 dominates the pop-
ulation, whereas in the disordered paramagnetic phase the three 
opinions coexist with equal fractions (1/3).

At this point, some definitions are necessary. The order param-
eter of the system can be defined as

O =
〈

1

N

∣∣∣∣∣
N∑

i=1

oi

∣∣∣∣∣
〉

, (1)

that is the “magnetization per spin” of the system, and 〈 ... 〉 stands 
for average over disorder or configurations, computed at the steady 

1 The nature of the random variables μi j does not affect our results, they can also 
be considered as annealed variables.

states. Let us also define f1, f−1 and f0 as the stationary fractions 
or densities of opinions +1, −1 and 0, respectively.

One can start considering the probabilities that contribute to 
increase and decrease the order parameter. Following [8,12], one 
can obtain the master equation for O ,

d

dt
O = qf−1 + (1 − q)[(1 − p) f1 f−1 + pf 2−1

+ (1 − p) f0 f1 + pf0 f−1]
− qf1 − (1 − q)[(1 − p) f1 f−1 + pf 2

1 + (1 − p) f0 f−1

+ pf0 f1] = 0 . (2)

In the stationary state dO/dt = 0. Using the normalization con-
dition f1 + f−1 + f0 = 1, we obtain two solutions for Eq. (2)
in the stationary state, namely 2 f1 + f0 = 1, which implies in 
f1 = f−1 = (1 − f0)/2 (disordered solution), or

f0 = q + p(1 − q)

(1 − p)(1 − q)
. (3)

In this case, Eq. (3) is valid in the ferromagnetic phase. We em-
phasize that q = 0 leads to f0 = p/(1 − p), which agrees with the 
result of Ref. [8]. One can obtain another equation for f0 consider-
ing the fluxes into and out of the neutral state o = 0. In this case, 
the master equation for f0 is given by

d

dt
f0 = q( f1 + f−1) + p(1 − q)( f 2

1 + f 2−1)

+ 2(1 − p)(1 − q) f1 f−1

− (1 − p)(1 − q) f0( f1 + f−1)

− p(1 − q) f0( f1 + f−1) . (4)

Considering the disordered phase, where f1 = f−1 = (1 − f0)/2, 
Eq. (4) gives us in the stationary state (where df0/dt = 0)

(1 − q)

(
1 − f0

2

)2

= [(1 − q) f0 − q]
(

1 − f0

2

)
, (5)

which gives us two solutions, namely f0 = 1 which can be ignored 
by considering the steady state of the other two fractions f1 and 
f−1 [8], or

f0 = 1 + q

3(1 − q)
. (6)

In this case, Eq. (6) is valid in the paramagnetic phase. The above 
equations (3) and (6) are both valid at the critical point, and we 
can equate them to obtain

qc(p) = 1 − 4p

2(1 − p)
. (7)

These critical noises separate the ferromagnetic and the paramag-
netic phases. As discussed above, in the ferromagnetic phase one 
of the extreme opinions +1 or −1 dominates the population (one 
of the sides wins the debate), whereas in the paramagnetic phase 
the two extreme opinions coexist ( f1 = f−1, i.e., there is no deci-
sion). Notice that we recover f0 = 1/3 in Eq. (6) and pc = 1/4 in 
Eq. (7) for q = 0, in agreement with [8].

In order to obtain an analytical expression for the order param-
eter, one can consider the fluxes into and out of the state o = +1.
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