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1. Introduction

Excited-State Quantum Phase Transitions (ESQPTs) are singular-
ities observed in discrete energy spectra of some bound quantum
systems in the infinite-size limit [1-3]. They show up as non-
analyticities in the density of quantum energy eigenstates as a
function of energy E and in the flow of the excited spectrum with
a suitable control parameter A. The ESQPT critical borderlines in
the A x E plane are usually terminated by critical points of the
ground-state Quantum Phase Transitions (QPTs) [4,5], so they can
be seen as extensions of the QPTs to the excited domain. Ther-
modynamical and dynamical consequences of ESQPTs, as well as
their experimental evidence in some synthetic quantum systems
are currently focus of intense research, see e.g. Refs. [6-9].

The ESQPT singularities in systems with a single effective de-
gree of freedom, f =1, are most dramatic and have been known
for long, see e.g. Refs. [10-13]. For increasing numbers of degrees
of freedom f, the ESQPTs affect higher and higher derivatives of
the level density and flow of the spectrum. Their effects in systems
with f =2 have been thoroughly studied in our recent works [14,
15]. These analyses contain the prerequisites for an ESQPT theory
in an arbitrary number of degrees of freedom, but only for systems
whose Hamiltonian is of the form
H L&

=5 +V(), (1)
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where V(q) is an analytic potential depending on coordinates q
and p2/2 is a coordinate-independent kinetic energy, which is
quadratic in momenta p. In this case, ESQPTs appear at energies
corresponding to stationary points of V (q) above the main mini-
mum, the corresponding defects in the spectrum being related to
the stationary-point types.

The aim of the present paper is to develop a general-f ESQPT
theory for systems with unrestricted forms of the Hamilton func-
tion H(q, p). It should be stressed that Hamiltonians with non-
trivial couplings between coordinates and momenta are common
in algebraic models of many-body collective dynamics because
generators of the corresponding dynamical groups are usually
formed by combinations of coordinate and momentum opera-
tors [16]. We develop a full classification of ESQPTs caused by
non-degenerate (quadratic) stationary points of a general Hamil-
tonian. Although our approach is rooted in the evaluation of the
system’s level density, we show that non-analyticities in this quan-
tity affect correspondingly the flow properties of the spectrum
with a variable parameter (the “level dynamics”). Our conclusions
are illustrated by a simple model. An example of an ESQPT due to
a degenerate stationary point is also analyzed, although for such
higher-order stationary points no general classification exists.

The paper is organized as follows: Section 2 analyzes the semi-
classical level density in a vicinity of a non-degenerate stationary
point and exemplifies a degenerate case. Section 3 aims at the
impact of stationary points on flow properties of the spectrum.
Section 4 presents a toy model with f = 3. Section 5 brings a brief
summary.
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2. Level density

The quantum level density for a system with discrete energy
spectrum is defined by

p(E)=Y 8(E—Ep, (2)
1

where § stands for the Dirac function and Eg < E; < E5, ... denote
individual energy eigenvalues. The level density can be decom-
posed into a sum of smooth and oscillatory components:

p(E) = p(E) + p(E). (3)

The smooth component p captures the mean energy dependence
of the level density (obtained, e.g., by a convolution of p with a
sufficiently wide smoothening function), while the oscillatory com-
ponent p has a zero mean and collects fluctuations (the balance
between the smoothed dependence and the full discrete spec-
trum).

In the limit i — 0, which in systems with finite numbers of
degrees of freedom f is equivalent to the infinite size limit [14,17],
the fluctuations of the level density become infinitely dense and
the oscillatory component gets washed out even by smoothening
over an infinitesimal energy interval. We shall therefore focus on
the smooth component only. It can be determined from the size of
the accessible phase space at a given energy:

Y 2f
p(E)_(Zn—h> /d XS(E—-H®x)), (4)

i [

d*f x
H(x)<E

—— —
Q(E)

where x= (p, q) is a 2 f-dimensional vector containing f-dimensi-
onal vectors of coordinates ¢ and momenta p, and H(x) is the
classical Hamiltonian of the system. Note that Eq. (4) can be de-
rived by the Feynman integration over the orbits of zero length,
while the oscillatory component is analogously linked to classical
periodic orbits [18].

2.1. Effects of stationary points

As seen in Eq. (4), the smooth component of the level den-
sity is proportional to the energy derivative of the volume func-
tion Q(E) associated with the Hamiltonian H(x). The function
Q(E) measures the 2 f-dimensional volume of the phase-space
region satisfying H(x) < E. Even for analytic classical Hamilto-
nian forms H(x) it develops singularities at the points where the
(2 f—1)-dimensional hypersurface determined by the constant en-
ergy condition H(x) = E crosses a stationary point of H. Indeed,
using the substitution formula §(x (¥)) =Y_; 5(x — X0i) /| Vn X (X0,
where x is any function satisfying x (x0;) =0 Vi and V, stands
for n-dimensional gradient, we express Eq. (4) via integration of
the reciprocal gradient 1/|V,sH| over the constant-energy hy-
persurface. Therefore, the smooth component of the level den-
sity has non-analyticities at energies Ey = H(w) corresponding to
points w where V,H(w) =0.

The impact of a stationary point of a given type on the level
density has a universal character—it depends only on the local
behavior of H(x) near w, and not on the global, system-specific
features of dynamics. This conclusion can be verified by a splitting
of the integral in Eq. (4) near the stationary-point energy E, into
a sum of regular and irregular parts:

P(E) = iy (E) + pw(E). (5)

The irregular part py contains integration over a small phase-
space neighborhood of the stationary point and captures all non-
analytic behavior of p due to the stationary point. The regular part
,5,(,9) contains the integration over the rest of the accessible phase
space and yields an analytic contribution to p. To classify the sin-
gularity in the level density caused by the stationary point, it is
sufficient to analyze properties of the irregular part.

Singularities of various volume functions have been studied
in rather different contexts. For instance, the so-called level set
method of computational geometry and image processing (see e.g.
Ref. [19]) describes the motion of a general interface I' in an
n-dimensional space of variable x via a suitably determined func-
tion ¢(x,t) such that I'(t) at any time ¢t coincides with the set of
x with ¢ = 0. In this method, an expression analogous to Eq. (4)
represents time derivative of the volume 2 bounded by I'. Non-
differentiability of the volume function at the places where the
interface crosses a non-degenerate stationary point of ¢ has been
analyzed by Hoveijn [20]. A similar problem has been addressed
also by Kastner et al. [21-23] in the framework of statistical me-
chanics, namely in connection with the so-called configurational
state density defined by w(E) = [dfq §(E — V(q)), in analogy to
Eq. (4), for systems with Hamiltonians of the type (1). Mathe-
matical conditions have been formulated for the occurrence of a
thermodynamic phase transition caused by stationary points of the
potential energy landscape [22].

Our aim in this paper is to analyze the link of various classi-
cal stationary points to the ESQPT singularities in quantal spectra
of general Hamiltonian systems. At first we show (Sec. 2.2) that
there exists a finite classification of ESQPTs corresponding to non-
degenerate (quadratic) stationary points of various types, where
“classification” means typology of discontinuities or singularities
that for a given number of degrees of freedom f appear in the
(f—1) th energy derivative of p. The results in this part are math-
ematically equivalent to those derived previously in other con-
texts [20-23]. Second, although a classification of ESQPTs caused
by higher-order stationary points does not exist, we give an illus-
trative example of this kind (Sec. 2.3) and discuss conditions for
descending the ESQPT signatures to lower derivatives of p. Third,
we analyze (Sec. 3) generic effects of stationary points on the flow
of quantum spectrum with the Hamiltonian control parameters,
showing that a smoothed flow is generally expected to exhibit the
same type of singularity as level density.

2.2. Singularities caused by non-degenerate stationary points

The analysis presented in this section is based on the Morse
theory [24]. Let M be an n-dimensional manifold of points x =
(x1,...,%7) and H(x) a smooth function H : M — R. Consider a
stationary point w satisfying V,H(w) = 0. The stationary point
is called non-degenerate if the Hessian matrix H(w) with ele-
ments H;j(w) = aZH(x)/(axiaxmx:W has only non-zero eigenval-
ues. This means that the function H(x) is locally quadratic in all
directions at the point w. According to the Morse lemma [24],
close to any non-degenerate stationary point w one can choose co-
;)rdmates y such that the following equality holds up to the O(y?)
erms:

Hw(W) =HW)—y3 — - —y24+y2 + - +y2. (6)

—R2 +R%

The integer r, called the index of stationary point, is equal to the
number of negative eigenvalues of H(w). Variable R_ is a radial
coordinate in the r-dimensional subspace connected with negative
eigenvalues of the Hessian matrix, while R is a radial coordinate
in the adjunct s-dimensional subspace (s =2 f —r) connected with
the positive eigenvalues.
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