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Classical stationary points of an analytic Hamiltonian induce singularities of the density of quantum en-
ergy levels and their flow with a control parameter in the system’s infinite-size limit. We show that for 
a system with f degrees of freedom, a non-degenerate stationary point with index r causes a discontinu-
ity (for r even) or divergence (r odd) of the ( f −1) th derivative of both density and flow of the spectrum. 
An increase of flatness for a degenerate stationary point shifts the singularity to lower derivatives. The 
findings are verified in an f = 3 toy model.
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1. Introduction

Excited-State Quantum Phase Transitions (ESQPTs) are singular-
ities observed in discrete energy spectra of some bound quantum 
systems in the infinite-size limit [1–3]. They show up as non-
analyticities in the density of quantum energy eigenstates as a 
function of energy E and in the flow of the excited spectrum with 
a suitable control parameter λ. The ESQPT critical borderlines in 
the λ × E plane are usually terminated by critical points of the 
ground-state Quantum Phase Transitions (QPTs) [4,5], so they can 
be seen as extensions of the QPTs to the excited domain. Ther-
modynamical and dynamical consequences of ESQPTs, as well as 
their experimental evidence in some synthetic quantum systems 
are currently focus of intense research, see e.g. Refs. [6–9].

The ESQPT singularities in systems with a single effective de-
gree of freedom, f = 1, are most dramatic and have been known 
for long, see e.g. Refs. [10–13]. For increasing numbers of degrees 
of freedom f , the ESQPTs affect higher and higher derivatives of 
the level density and flow of the spectrum. Their effects in systems 
with f = 2 have been thoroughly studied in our recent works [14,
15]. These analyses contain the prerequisites for an ESQPT theory 
in an arbitrary number of degrees of freedom, but only for systems 
whose Hamiltonian is of the form

H = p2

2
+ V (q) , (1)
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where V (q) is an analytic potential depending on coordinates q
and p2/2 is a coordinate-independent kinetic energy, which is 
quadratic in momenta p. In this case, ESQPTs appear at energies 
corresponding to stationary points of V (q) above the main mini-
mum, the corresponding defects in the spectrum being related to 
the stationary-point types.

The aim of the present paper is to develop a general- f ESQPT
theory for systems with unrestricted forms of the Hamilton func-
tion H(q, p). It should be stressed that Hamiltonians with non-
trivial couplings between coordinates and momenta are common 
in algebraic models of many-body collective dynamics because 
generators of the corresponding dynamical groups are usually 
formed by combinations of coordinate and momentum opera-
tors [16]. We develop a full classification of ESQPTs caused by 
non-degenerate (quadratic) stationary points of a general Hamil-
tonian. Although our approach is rooted in the evaluation of the 
system’s level density, we show that non-analyticities in this quan-
tity affect correspondingly the flow properties of the spectrum 
with a variable parameter (the “level dynamics”). Our conclusions 
are illustrated by a simple model. An example of an ESQPT due to 
a degenerate stationary point is also analyzed, although for such 
higher-order stationary points no general classification exists.

The paper is organized as follows: Section 2 analyzes the semi-
classical level density in a vicinity of a non-degenerate stationary 
point and exemplifies a degenerate case. Section 3 aims at the 
impact of stationary points on flow properties of the spectrum. 
Section 4 presents a toy model with f = 3. Section 5 brings a brief 
summary.
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2. Level density

The quantum level density for a system with discrete energy 
spectrum is defined by

ρ(E) =
∑

l

δ(E − El) , (2)

where δ stands for the Dirac function and E0 ≤ E1 ≤ E2, . . . denote 
individual energy eigenvalues. The level density can be decom-
posed into a sum of smooth and oscillatory components:

ρ(E) = ρ̄(E) + ρ̃(E) . (3)

The smooth component ρ̄ captures the mean energy dependence 
of the level density (obtained, e.g., by a convolution of ρ with a 
sufficiently wide smoothening function), while the oscillatory com-
ponent ρ̃ has a zero mean and collects fluctuations (the balance 
between the smoothed dependence and the full discrete spec-
trum).

In the limit h̄ → 0, which in systems with finite numbers of 
degrees of freedom f is equivalent to the infinite size limit [14,17], 
the fluctuations of the level density become infinitely dense and 
the oscillatory component gets washed out even by smoothening 
over an infinitesimal energy interval. We shall therefore focus on 
the smooth component only. It can be determined from the size of 
the accessible phase space at a given energy:

ρ̄(E) =
(

1

2π h̄

) f ∫
d2 f x δ(E − H(x))︸ ︷︷ ︸

∂
∂ E ∫

H(x)≤E
d2 f x︸ ︷︷ ︸

�(E)

, (4)

where x ≡ (p, q) is a 2 f -dimensional vector containing f -dimensi-
onal vectors of coordinates q and momenta p, and H(x) is the 
classical Hamiltonian of the system. Note that Eq. (4) can be de-
rived by the Feynman integration over the orbits of zero length, 
while the oscillatory component is analogously linked to classical 
periodic orbits [18].

2.1. Effects of stationary points

As seen in Eq. (4), the smooth component of the level den-
sity is proportional to the energy derivative of the volume func-
tion �(E) associated with the Hamiltonian H(x). The function 
�(E) measures the 2 f -dimensional volume of the phase–space 
region satisfying H(x) ≤ E . Even for analytic classical Hamilto-
nian forms H(x) it develops singularities at the points where the 
(2 f −1)-dimensional hypersurface determined by the constant en-
ergy condition H(x) = E crosses a stationary point of H . Indeed, 
using the substitution formula δ(χ(x)) = ∑

i δ(x − x0i)/|∇nχ(x0i)|, 
where χ is any function satisfying χ(x0i) = 0 ∀i and ∇n stands 
for n-dimensional gradient, we express Eq. (4) via integration of 
the reciprocal gradient 1/|∇2 f H | over the constant-energy hy-
persurface. Therefore, the smooth component of the level den-
sity has non-analyticities at energies E w ≡ H(w) corresponding to 
points w where ∇2 f H(w) = 0.

The impact of a stationary point of a given type on the level 
density has a universal character—it depends only on the local 
behavior of H(x) near w , and not on the global, system-specific 
features of dynamics. This conclusion can be verified by a splitting 
of the integral in Eq. (4) near the stationary-point energy E w into 
a sum of regular and irregular parts:

ρ̄(E) = ρ̄
(0)
w (E) + ρ̄w(E) . (5)

The irregular part ρ̄w contains integration over a small phase–
space neighborhood of the stationary point and captures all non-
analytic behavior of ρ̄ due to the stationary point. The regular part 
ρ̄

(0)
w contains the integration over the rest of the accessible phase 

space and yields an analytic contribution to ρ̄ . To classify the sin-
gularity in the level density caused by the stationary point, it is 
sufficient to analyze properties of the irregular part.

Singularities of various volume functions have been studied 
in rather different contexts. For instance, the so-called level set 
method of computational geometry and image processing (see e.g.
Ref. [19]) describes the motion of a general interface 	 in an 
n-dimensional space of variable x via a suitably determined func-
tion ϕ(x, t) such that 	(t) at any time t coincides with the set of 
x with ϕ = 0. In this method, an expression analogous to Eq. (4)
represents time derivative of the volume � bounded by 	. Non-
differentiability of the volume function at the places where the 
interface crosses a non-degenerate stationary point of ϕ has been 
analyzed by Hoveijn [20]. A similar problem has been addressed 
also by Kastner et al. [21–23] in the framework of statistical me-
chanics, namely in connection with the so-called configurational 
state density defined by ω(E) = ∫

d f q δ(E − V (q)), in analogy to 
Eq. (4), for systems with Hamiltonians of the type (1). Mathe-
matical conditions have been formulated for the occurrence of a 
thermodynamic phase transition caused by stationary points of the 
potential energy landscape [22].

Our aim in this paper is to analyze the link of various classi-
cal stationary points to the ESQPT singularities in quantal spectra 
of general Hamiltonian systems. At first we show (Sec. 2.2) that 
there exists a finite classification of ESQPTs corresponding to non-
degenerate (quadratic) stationary points of various types, where 
“classification” means typology of discontinuities or singularities 
that for a given number of degrees of freedom f appear in the 
( f −1) th energy derivative of ρ̄ . The results in this part are math-
ematically equivalent to those derived previously in other con-
texts [20–23]. Second, although a classification of ESQPTs caused 
by higher-order stationary points does not exist, we give an illus-
trative example of this kind (Sec. 2.3) and discuss conditions for 
descending the ESQPT signatures to lower derivatives of ρ̄ . Third, 
we analyze (Sec. 3) generic effects of stationary points on the flow 
of quantum spectrum with the Hamiltonian control parameters, 
showing that a smoothed flow is generally expected to exhibit the 
same type of singularity as level density.

2.2. Singularities caused by non-degenerate stationary points

The analysis presented in this section is based on the Morse 
theory [24]. Let M be an n-dimensional manifold of points x =
(x1, . . . , xn) and H(x) a smooth function H : M → R. Consider a 
stationary point w satisfying ∇n H(w) = 0. The stationary point 
is called non-degenerate if the Hessian matrix H(w) with ele-
ments Hi j(w) = ∂2 H(x)/(∂xi∂x j)|x=w has only non-zero eigenval-
ues. This means that the function H(x) is locally quadratic in all 
directions at the point w . According to the Morse lemma [24], 
close to any non-degenerate stationary point w one can choose co-
ordinates y such that the following equality holds up to the O(y3

i )

terms:

H w(y) = H(w)−y2
1 − · · · − y2

r︸ ︷︷ ︸
−R2−

+y2
r+1 + · · · + y2

n︸ ︷︷ ︸
+R2+

. (6)

The integer r, called the index of stationary point, is equal to the 
number of negative eigenvalues of H(w). Variable R− is a radial 
coordinate in the r-dimensional subspace connected with negative 
eigenvalues of the Hessian matrix, while R+ is a radial coordinate 
in the adjunct s-dimensional subspace (s = 2 f − r) connected with 
the positive eigenvalues.
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