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We explore the non-equilibrium dynamics of two coupled zig-zag chains of trapped ions in a double 
well potential. Following a quench of the potential barrier between both wells, the induced coupling 
between both chains due to the long-range interaction of the ions leads to the complete loss of order 
in the radial direction. The resulting dynamics is however not exclusively irregular but leads to phases 
of motion during which various ordered structures appear with ions arranged in arcs, lines and crosses. 
We quantify the emerging order by introducing a suitable measure and complement our analysis of the 
ion dynamics using a normal mode analysis showing a decisive population transfer between only a few 
distinguished modes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cooled ions in traps form a clean and highly versatile setup 
for exploring structure formation with long-range interacting par-
ticles, both in equilibrium and non-equilibrium. In equilibrium, 
possible structures include small and large ion crystals [1–3] pos-
sessing various internal ordering such as concentric rings (2D), 
shells (3D) [4–6] and string-of-disks configurations [7], and even 
two-component Coulomb bicrystals [8]. At the crossover from one 
to higher dimensions trapped ions can also form zig-zag con-
figurations, a structure that attracts particular attention in the 
recent literature [9–11]. Specifically, varying the geometry of an 
anisotropic harmonic trap allows for a second-order phase transi-
tion from a linear to a zig-zag structure, which can either occur 
without topological defects [12,13] or involve topological defects 
so-called kinks [14–16]. Out of equilibrium, the recent literature 
predicts an equally rich variety of possible ionic structures includ-
ing defects in Coulomb crystals [17–21] spatiotemporal patterns 
in laser-driven microtraps [22] and periodic lattices [23,24], but 
also interaction induced current reversals of the transport direction 
[25] based on structure formation in the phase space. Much of this 
research on structure formation with trapped ions roots in the ad-
mirable advancements of the controllability of ions in recent years. 
This ranges from the quickly progressing miniaturization of ion 
traps and lab on chip technologies [26,27] via the advent of optical 
trapping techniques [28] to the discovery of multi-segmented Paul 
and Penning traps [29,30]. The latter example in particular allows 
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for more and more complex but still controllable arrangements of 
long-range interacting particles as required e.g. for quantum in-
formation processing [31–34]. The above advancements allow and 
evoke a new type of question: How do individual ionic structures 
respond if we couple them to each other? Consider for example a 
segmented ion trap with two wells, both loaded with an individual 
zig-zag configuration, separated from each other by a potential bar-
rier between the wells. Let us now quench the barrier to a lower 
value, which increases the coupling between the individual chains: 
Are the only two (expected) alternatives for the dynamics of the 
zig-zag chains that they either deform only slightly and respond 
with small oscillations to the increased coupling or that we ob-
serve their complete melting resulting in irregular oscillations of 
all ions? This is precisely the problem we want to investigate in 
the present work. To explore the above problem we develop a min-
imal model based on a two dimensional double well potential that 
allows for zig-zag configurations in both wells whose geometries 
resemble the well-known zig-zag states in anisotropic single well 
traps. Remarkably, following the quench of the barrier we observe 
that the restructuring process does not simply lead to irregular os-
cillations but to a complex non-equilibrium dynamics constituted 
of different phases of motion. Phases of irregular oscillatory motion 
are interrupted by motional phases which exhibit transient ordered 
configurations. Although nonlinear dynamics governs the motion of 
the coupled ion chains, we employ a normal mode analysis show-
ing that the population of the corresponding linear eigenvectors is 
not arbitrarily distributed over the whole band of modes as one 
would expect for e.g. a chaotic system (see [35] and references 
therein for chaotic behavior in trapped ion clusters). Instead, dur-
ing most phases of the time evolution only a few eigenvectors 
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are strongly populated and nonlinear effects show up in form of 
a decisive and quite sudden transfer of energy among the different 
modes. Our work is organized as follows. Section 2 explains our 
setup and the preparation of the ground state configuration. Sec-
tion 3 provides our main results followed by a normal mode and 
population analysis of the dynamics. We summarize our findings 
and their interpretation in section 4.

2. Setup, Hamiltonian and ground state configuration

We consider N ions, described as classical point particles with 
mass m and charge Q , confined in radial direction (x, y) to a linear 
quadrupole Paul trap and to a double well potential (segmented 
trap) in z-direction.1

�(x, y, t) = Udc

2
(cx2 + cy2) + Urf

2
cos (ωrft)(cx2 − cy2), (1)

with Udc and U rf being the applied constant and the rf-voltage; ωrf
is the (radio)frequency, c is a geometrical parameter of the trap. 
The geometrical parameter is for both directions x and y equal 
in radially symmetric traps but in planar traps [39,30] the geo-
metrical parameter for both directions can strongly differ by the 
design of the traps. The ion dynamics in the radio-frequency trap 
is composed of the so-called micro motion, and a comparatively 
slow averaged motion taking place in an effective harmonic po-
tential [40] V (x, y) = m

2 (ω2
x x2 + ω2

y y2). Here, ωx = ωr f
2

√
a − q2/2

and ωy = ωr f
2

√
a + q2/2 are the effective trapping frequencies with 

a = 4Q Udc

mω2
r f

c and q = 2Q Urf

mω2
r f

c being dimensionless parameters. For 

the confinement in z-direction we assume the following phe-
nomenological double well potential [41], with wells centered at 
≈ ±z0 and separated from each other by a barrier of height ∼ 1/C
(see Fig. 1).

V d(z) = m

2
ω2

z z2
0 + m

2
ω2

z z2 − m

2

√
4C2 + 4ω4

z z2z2
0 (2)

This potential quantitatively resembles the shape of individual har-
monic wells around ±z0 up to terms proportional to C2.

Specifically, for a given sufficiently high barrier this allows us 
to prepare zig-zag chains in each of the two wells which are the 
energetically lowest equilibrium configuration of the double well 
which we call the ground state configuration in the following. Note 
that finding the many-particle minimum of a many ion system is 
generally a highly nontrivial task; hence the present choice of the 
double well potential is a crucial step to allow for a numerical 
study of the dynamics of coupled ion chains. After preparing this 
configuration, i.e. its numerical determination, our strategy will be 
to ramp down the barrier height by a certain amount which corre-
sponds to a quench of the quantity C . Subsequently the resulting 
dynamics of the now strongly coupled ion chains will be explored. 
To understand the complex dynamics of coupled many-ion struc-
tures in non-equilibrium it is crucial to simplify our model. First, 
since we are interested in the dynamics on large scales we neglect 
the micromotion. Second, we focus on a two-dimensional descrip-
tion, which simplifies the visualization of the ionic structures and 
their analysis but does not change qualitatively the resulting dy-
namics and phenomenology of the structure forming processes. 

1 Note that formally, the Laplace equation does not allow to combine the linear 
quadrupole trap potential, which we choose for simplicity, with a double well po-
tential in axial direction. A complex form of the dc part in the radial direction is 
necessary to compensate the double well term in the axial direction. However, re-
cent experiments with segmented Paul traps (e.g. [36–38]) could indeed realize the 
combination of a linear Paul trap, similar to the potential we have chosen here, and 
a Mexican hat like potential which justifies to consider a combination of a double 
well potential with a linear Paul trap.

Fig. 1. (a) Cartoon of the double zig-zag equilibrium configuration in the double 
well potential used as the initial configuration, calculated for the used parameters. 
(b, c) Magnifications of the part of the ionic configuration which links between 
the two chains, i.e. in the barrier region. It highlights the difference between the 
ground state configuration (b) and the energetically next higher equilibrium config-
uration (c) which we call the mirror configuration. (d) The red (solid) line shows 
the double well potential before the quench and the blue (dashed) line after the 
quench. A lowered barrier enhances the coupling between the two ion chains (arbi-
trary units throughout).

Specifically, we choose parameters α = ωx/ωz ≈ 8.3 where the 
ground state configuration is a planar (2D) zig-zag structure in the 
x–z-plane far from the transition to a helical (3D) zig-zag chain. 
The transition from the 2D structure to the 3D helical zig-zag 
chain occurs at α ≈ 4.5, whereas the transition to a linear 1D line-
structure occurs at α ≈ 10 (for ωx = ωy).2 Thus, although ramping 
the barrier will generally produce both in-plane and out-of-plane 
fluctuations, the latter ones are generically small. A strong confine-
ment in y-direction (ωy/ωz ≥ 10) prevents their amplification in 
the course of the consecutive dynamics; hence the ions stay close 
to the x–z plane. Indeed the impact of small out-of plane fluc-
tuations on the intra-plane dynamics is quadratically suppressed 
with the distance of the ions perpendicular to the x–z plane3 and 
consequently a projection of the ion dynamics in 3D looks very 
similar to a direct 2D description. Hence, we focus on a two-
dimensional minimal model given by the two-dimensional Hamil-
tonian:

H({ri,pi}) =
n∑

i=1

pi
2

2m
+

n∑
i=1

[Vd(z) + V (x)]

+
n∑

i=1, j<i

Q 2

4πε0ri j
(3)

with V (x) = mω2x2/2, ri = (xi, zi), ri j =
√

(xi − x j)
2 + (zi − z j)

2

and p = (px, pz). Introducing a rescaled time tu = 1/ωz and space 
units xu = K ≡ [Q 2/(4πε0mω2

z )]1/3 and defining

2 These values for the aspect ratios have been calculated for the used double well 
potential and differ slightly from the values in an anisotropic harmonic potential 
[9,42].

3 The only force which couples the dynamics of ions perpendicular to the 
x–z plane to the intra-plane dynamics is the Coulomb coupling. Consider two 
ions in distance L =

√
L2‖ + L2⊥ where L‖ is the projection of their distance onto 

the x–z plane and L⊥ is their distance perpendicular to this plane. Then F‖ =
F cos[tan(L⊥/L‖)] ≈ F [1 − (L⊥/L‖)2/2] for L‖ 	 L⊥ , showing that forces produced 
by small out-of plane oscillations onto the intra-plane dynamics are quadratically 
suppressed.
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