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We study Fermi gases in two dimensions at low temperatures with attractive interactions. Analytic results 
are derived for the equation of state and the Kosterlitz–Thouless transition temperature as functions of 
the two-body binding energy and the density of the gas. Our results for the equation of state and the 
pressure of the gas strongly deviate from the mean field predictions. However, they are in reasonable 
agreement with Monte-Carlo calculations and recent experiments with cold atomic gases.
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1. Introduction

In the last years ultracold two dimensional Fermi gases have 
attracted a lot of interest. One reason is the assumption that 
pairing of fermions in two dimensions can help to explain un-
conventional superconductivity. Already in the 1980s, the two di-
mensional Fermi gas has been studied theoretically with a mean 
field approach based on the famous BCS theory and the BCS–BEC 
crossover in three dimensions [1,2]. In 3D, the BCS-state evolves to 
a superfluid BEC of tightly bound molecules by tuning the scatter-
ing length from negative to positive values.

The BCS–BEC crossover in two dimensions differs fundamen-
tally from the 3D case. In 3D, in the BCS-regime, fermionic pair-
ing is governed by a many-body order parameter of Cooper pairs, 
while a two-body bound state is lacking. Contrary, in 2D even in 
the BCS-regime, a two body bound state exists, which significantly 
influences the physics of the system. In the BEC-regime in 3D, the 
tightly bound molecular pairs form the order parameter of a su-
perfluid BEC of molecules. In 2D, a molecular BEC can strictly form 
only at T = 0. However, a superfluid with an algebraically decay-
ing correlation function can form at finite temperatures below the 
Kosterlitz–Thouless (KT) transition temperature [3]. The superfluid 
order parameter follows from the phase of the wave-function of 
the molecular gas and the appearance of vortex–antivortex pairs. 
Although in 2D fermionic pairing and the BCS–BEC crossover are 
fundamentally different, we keep using the expressions BCS and 
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BEC for comparisons and discussions throughout the paper. The 
evolution of fermion pairing from three to two dimensions has 
been investigated experimentally in [4].

The equation of state at zero temperature for the BCS–BEC 
crossover in two dimensions has been determined with a fixed-
node variational Monte-Carlo calculation [5]. The results deviate 
even qualitatively from the mean field approximations. Two re-
cent experiments with trapped cold atoms are in good agreement 
with the Monte-Carlo calculations [6,7]. The BCS–BEC crossover in 
2D has been also investigated recently in [8] experimentally and 
with a Luttinger Ward theory. Further recent theoretical studies 
on the equation of state in the 2D BCS–BEC crossover are [9–11]. 
A Monte-Carlo calculation for finite temperature is given in [12]. 
Additionally, spin imbalanced Fermi gases in two dimensions has 
been investigated in [6].

The KT-transition temperature for a Fermi gas has been calcu-
lated in [13]. In the molecular limit the KT-temperature should 
converge to the KT-temperature of the weakly interacting Bose 
gas [14,15]. Recently, the equation of state at finite temperatures 
and the KT-transition temperature have been obtained numerically 
with a Luttinger–Ward model [16] and with Gaussian fluctuations 
beyond mean field [17]. Experimentally, the KT condensate has 
been investigated in [18].

However, the derivation of an analytical expression for the 
equation of state, which is qualitatively valid through the whole 
crossover, is still lacking. From such an expression one can sim-
ply derive thermodynamic quantities like the chemical potential or 
the pressure of the gas. Therefore, the goal of this paper is to pro-
vide an analytical model for the two dimensional Fermi gas with 
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attractive interactions. We derive simple expressions for the equa-
tion of state at zero temperature and the KT transition temperature 
as functions of the two-body binding energy εB and the density of 
the gas n. We validate the model by comparison with Monte-Carlo 
calculations [5] and cold atom experiments [6,7].

2. Equation of state

As stated in the introduction, the mechanism of fermionic pair-
ing is fundamentally different in a two dimensional system. In 2D, 
a many body system is significantly influenced by the two-body 
physics, and in particular the two-body bound state. Therefore, we 
choose an approach based on two-body scattering, where many 
body effects only enter approximately by excluding all intermedi-
ate states below the Fermi surface. This approximation is imple-
mented in the Bethe–Goldstone integral equation [19]. It is known 
from nuclear physics [20–22] and has been successfully used in 
the context of Brueckner–Hartree–Fock theory in condensed mat-
ter systems [23], e.g. for the Fermi–Polaron [24–26] and the 2D 
electron gas [27].

We consider a Fermi gas with an equal number n/2 of two sorts 
of particles, |↑ > and |↓ >, interacting attractively at zero tempera-
ture. The Bethe–Goldstone integral equation for the reaction matrix 
G can be written as [22]

G(ki,P,k f ) = V (k f − ki) +
∫

dk

(2π)D
V (|k f − k|)×

Q (k)

Ei(P,ki) − E(P,k)
G(k,ki,P).

(1)

Here ki , k and k f and are the initial, intermediate and final rel-
ative momentum of the two interacting particles. Ei(P, ki) and 
E(P, k) are the initial and intermediate energies. P is half of their 
center of mass momentum and V (k) is the Fourier transform of 
the two-particle interaction potential. Q (k) is the Pauli operator, 
which guarantees that the momentum of intermediate states lies 
above the Fermi surface. If |P + k| > kF and |P − k| > kF , then 
Q = 1 otherwise Q = 0. Here kF = √

2πn is the Fermi momen-
tum and n is the total density of the gas. In Eq. (1) only ladder 
diagrams are summed.

The interaction energy follows from the mean value of the re-
action matrix εint = 〈

G(ki,P,k f )
〉
. The energy per particle is then 

given by E/N = E F G/N + εint/n, where E F G/N = εF /2 is the ki-
netic energy of the ideal Fermi gas and εF = k2

F /2m is the Fermi 
energy.

The interaction is characterized by an attractive short-range po-
tential of arbitrary shape. We can express the potential in terms of 
the two-particle scattering amplitude f , which obeys an integral 
equation similar to Eq. (1), but with Q = 1 (Lippmann–Schwinger 
equation). Replacing the potential by f renormalizes Eq. (1) with 
respect to ultraviolet divergences and we obtain [28]

G(ki,k f ,P) = f (ki,k f )+∫
dk

(2π)D

f (ki,k f − k) (Q (k) − 1)

Ei(P,ki) − E(P,k)
g(k1,k2,k),

(2)

where f (ki, k f ) is the off-shell scattering amplitude. Typically, the 
momentum transfer is small ki ≈ k f and the main contribution 
from the integral comes from small values of k. Thus, we can ap-
proximate the off-shell scattering amplitude by the on-shell scat-
tering amplitude f (ki).

Then the reaction matrix does not depend on the final momen-
tum k f and Eq. (2) can be written as

1

G(ki)
≈ 1

f (ki)
−

∫
dk

(2π)D

Q (k) − 1

Ei(P,ki) − E(P,k)
. (3)

Fig. 1. Main: Comparison of the energy per particle from Eq. (5) as a function of the 
two-body binding energy εb with the Monte-Carlo data from [5]. For the compari-
son we introduced the 2D scattering length a2D = 2h̄e−γ /

√
mεB [5]. Inset: Energy 

per particle with εB/2 subtracted.

We further assume that initially every two Fermions with op-
posite momenta are paired on the two-body level with binding 
energy εB < 0 [31] and P = 0. Then the energy denominator 
simply reduces to Ei(P, ki) − E(P, k) ≈ εB − k2/m. For the case 
of a bound state the scattering amplitude has a pole, such that 
f
(
ki = √

mεb
)−1 = 0. The Pauli operator Q (k) − 1 limits the inte-

gral to k < kF , which reflects the effect of the background Fermi 
gas on the two body scattering. The reaction matrix in 2D is then 
simply given by

1

G(εb)
≈ −

kF∫
0

dk

2π

k

|εb| + k2

m

= − m

4π
ln

[
1 + 2εF

|εb|
]

. (4)

The interaction energy follows from the mean value of the re-
action matrix which reduces at T = 0 to εint = ∫

ki<kF

dki
(2π)2 ×∫

k f <kF

dk f

(2π)2 G(εb, εF ). This leads with Eq. (4) to an analytical for-

mula for the equation of state [33]

E

N
≈ εF

2
− εF

ln
[

1 + 2εF|εb |
] . (5)

In the limit of weak interactions, i.e. |εb| → 0, we have, as ex-
pected, E → E F G . In the opposite limit, |εb| � εF , we obtain the 
interaction energy εint ≈ εB/2 − εF /2. Thus, the total energy per 
particle converges to half of the molecular binding energy E/N ≈
εB/2 [32]. This is the expected result, because in this regime the 
gas consists of strongly bound molecular bosonic pairs. The fer-
monic character and hence the density dependence vanish. Since 
our approach starts from two-body scattering of the fermions, the 
interaction between bosonic pairs is lacking. However, our theory 
shows, that the system behaves completely bosonic for |εb| � εF . 
Thus, in the molecular limit the theory of weakly interacting Bose 
gases should be used [5].

Fig. 1 shows that our result Eq. (5) is in reasonable agree-
ment with Monte-Carlo calculations [5]. Recent experiments [6,
7] confirmed already the Monte-Carlo results. The inset shows the 
deviations in the molecular limit, following from the fact that in-
teractions between bosonic pairs are neglected.

Note, that our result Eq. (5) is in some sense universal, since 
it does not depend on the particular shape of the interaction, but 
only on the two-body binding energy.
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