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We use the effective-field theory with correlations based on different cluster sizes to investigate phase 
diagrams of the frustrated Ising antiferromagnet on the honeycomb lattice with isotropic interactions 
of the strength J1 < 0 between nearest-neighbour pairs and J2 < 0 between next-nearest neighbour 
pairs of spins. We present results for the ground-state energy as a function of the frustration parameter 
R = J2/| J1|. We find that the cluster-size has a considerable effect on the existence and location of a 
tricritical point in the phase diagram at which the phase transition changes from the second order to the 
first one.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since a honeycomb lattice antiferromagnet with only nearest-
neighbour exchange interactions ( J1) is considered as a bipartite 
lattice, the ground state exhibits long-range ordering. The system 
becomes frustrated like the square lattice, if the next-nearest-
neighbour exchange interactions ( J2) are considered. However, 
spin fluctuations are expected to be larger for the honeycomb lat-
tice than the square lattice because the coordination number z = 3
in the honeycomb lattice is smaller than that of z = 4 in the square 
lattice. Hence, it is interesting to study the magnetic ordering on 
the honeycomb lattice under frustrating interactions.

We note that investigations of the frustrated two-dimensional 
Ising antiferromagnet (AF) with spin- 1

2 on a square lattice have 
a long history (see, e.g. [1–8]). In particular, it has been found 
that the introduction of competing interactions is accompanied by 
the appearance of new ground states at the critical point R ≡
J2/| J1| = −0.5 and due to the ground-state degeneracy there is 
no long-range order at finite temperatures [4,9–11]. Despite the 
simplicity of the model, it has been proved difficult to precisely 
determine the order of the phase transition. Now, it is well es-
tablished by using different approximate studies [10–12] and the 
Monte Carlo method [13–18] that in the region of R < −0.5, the 
phase transition changes at a tricritical temperature from the sec-
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ond order to the first order. However, a very recent cluster mean-
field calculation [18] with a cluster of the size 4 × 4 and the 
effective-field theory with correlations based on the different clus-
ter sizes [19] give change in the order of the phase transition not 
only for R < −0.5 but also in the region of R > −0.5.

Interestingly, a similar attention has not been paid so far to the 
frustrated Ising AF with spin- 1

2 on the honeycomb lattice. A special 
feature of this lattice is that it is not a Bravais lattice, i.e., a trans-
lation invariance of the full lattice is broken for any type of state 
[20]. This non-Bravais lattice can be viewed as a composition of 
two interlacing triangular sublattices and the lattice is constructed 
by two vectors of the triangular Bravais lattice (see Fig. 1 in [21]). 
Hence, for a transition from a paramagnetic state to a magneti-
cally ordered phase, the spatial symmetry is not reduced as for the 
square lattice. We expect that the non-Bravais character of this bi-
partite lattice results in a behaviour that cannot be observed in the 
square lattice or other Bravais lattices [22]. Moreover, in view of 
recent experimental activities [23–28], materials regarded as vari-
ous types of spin systems on honeycomb lattices are expected to 
be synthesized.

Motivated by the above considerations, in this paper we inves-
tigate the phase diagram and critical properties of the frustrated 
J1– J2 Ising AF on the honeycomb lattice. As far as we know, this 
model has not been analyzed in the literature. An interest in the 
honeycomb lattice is also promoted in recent years because of 
its relevance to graphene [29]. However, when second-neighbour
interactions are taken into account or when a magnetic field is 
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applied to the honeycomb lattice, the Hamiltonian is no longer ex-
actly solvable and only approximate analytical studies or numerical 
approaches are possible to attack this more general problem.

In this paper we employ the effective-field theory with corre-
lations (EFT) based on different cluster sizes which has been used 
for an investigation of frustration in the square case [19]. There-
fore, it will be interesting to compare effects of frustration on the 
phase diagram of these bipartite lattices. This approach is based 
on the differential operator technique introduced into exact Ising 
spin identities and has been successfully applied to a variety of 
spin- 1

2 and higher spin problems (for a review see, e.g., Refs. [30,
31]) including a geometrically frustrated triangular lattice Ising AF 
[32–34]. Namely, here we will study the frustrated J1– J2 Ising AF 
on the honeycomb lattice in its parameter space using EFT based 
on one-, two-, four-, and six-spin clusters. It is important that the 
present EFT allows us to treat large clusters in a simpler and more 
efficient computational manner.

2. Theory

We consider the frustrated honeycomb Ising AF with competing 
nearest-neighbour ( J1 < 0) and next-nearest-neighbour ( J2 < 0)

interactions. The Hamiltonian of the model is given by

H = − J1

∑
〈i, j〉

si s j − J2

∑
〈i,i2〉

si si2 , (1)

with si = ±1, where the first and second sums are taken over 
all pairs of nearest-neighbours (nn) and next-nearest-neighbours 
(nnn) of spins, respectively.

Before calculation of the transition line between ordered and 
paramagnetic phases, it is appropriate to first consider the ground 
state of this model. For J2 = 0 the ground state of the Hamil-
tonian (1) is the known AF solution with the energy per site 
E A F /N = −3/2| J1|. However, adding the nnn AF interactions yields 
an increase of the ground state energy per site for the AF state:

E A F

N
= −3

2
(| J1| + 2 J2). (2)

In this case each site has its three nn on the other sublattice 
and six nnn on its own sublattice. For a large negative J2 the 
system orders in the collinear striped states (CS) described ei-
ther by alternate single ferromagnetic columns of antiparallel spins 
(Fig. 1(a)) or alternate pairs of columns consisting of AF coupled 
spins (Fig. 1(b)) (see Refs. [35,36]). In such case the ground state is 
degenerate and its energy per site is given by

EC S

N
= −1

2
(| J1| − 2 J2). (3)

A critical point separating these ordered phases is located at Rc =
−1/4, where the transition temperature is suppressed to T = 0 K. 
This value may be compared to that of the frustrated J1– J2 Ising 
model on the square lattice Rc = −1/2, where the energy of the 
collinear (or superantiferromagnetic) state depends only on the 
value of J2 coupling [14]. Due to the degeneracy of the ground 
state the system remains disordered at all finite temperatures for 
R < −1/4. Therefore, we focus only on the AF phase which exists 
for R > −1/4.

A starting point of the EFT for our Ising spin system is general-
ized Callen–Suzuki [37,38] exact identity

〈O {n}〉 =
〈

Tr{n}[O {n} exp(−βH{n})]
Tr{n}[exp(−βH{n})]

〉
, (4)

where the partial trace Tr{n} is to be taken over the set {n} of spin 
variables specified by the cluster spin Hamiltonian H{n} . Here, O {n}

Fig. 1. Ground-state configurations of the J1– J2 Ising model on the honeycomb 
lattice showing two, (a) and (b), degenerate collinear striped states. Two sublattices 
are marked by black and white circles.

denotes any arbitrary spin function including the set of all {n} spin 
variables (finite cluster) and 〈· · · 〉 denotes the usual thermal aver-
age.

2.1. Single-spin cluster approach

Let us consider first the cluster containing only one spin on site 
i and A sublattice which interacts with other nn and nnn spins 
from the neighbourhood. In this approach the multispin Hamilto-
nian H{n} for the AF single-spin cluster (n = 1) on the honeycomb 
lattice is given by

H A F{1} = −sA
i hA F

i , (5)

with

hA F
i = J1

3∑
i1=1

sB
i1

+ J2

6∑
i2=1

sA
i2
, (6)

where sA
i and sB

j are spin variables on sublattices A and B , re-
spectively, and the superscript AF denotes the antiferromagnetic 
system. After performing the trace over the selected spin sA

i on 
the right-hand side of the relation (4), applying the differential op-
erator technique, and using the van der Waerden identity for the 
two-state Ising spin system, one finds

mA ≡ 〈sA
i 〉 =

〈
3∏

i1=1

(A1 + B1sB
i1
)

6∏
i2=1

(A2 + B2sA
i2
)

〉
tanh(βx)

∣∣∣
x=0

,

(7)

where Aν = cosh( Jν Dx), Bν = sinh( Jν Dx) (ν = 1, 2), and Dx =
∂/∂x is the differential operator.

To proceed further, one has to approximate the thermal multi-
ple correlation functions occurring on the right-hand side of Eq. (7)
as follows:

〈sB
i1

sB
i′1

· · · sA
i2
〉 ≈ 〈sB

i1
〉〈sB

i′1
〉 · · · 〈sA

i2
〉, (8)

which means that nn and nnn of site i are assumed to be com-
pletely independent of each other. It should be noted here that 
the approximation (8) is quite superior to the standard mean-field 
theory since even though it neglects correlations between differ-
ent spins but takes the single-site kinematic relations exactly into 
account through the van der Waerden identity. Based on this ap-
proximation, Eq. (7) reduces to

mA = (A1 + B1mB)3(A2 + B2mA)6 tanh(βx)
∣∣∣
x=0

, (9)

where mα (α = A, B) are the sublattice magnetizations per site. 
At this place, in order to solve the problem generally, we need to 
evaluate the sublattice magnetization mB . It can be derived in the 
same way as mA by the use of (4) for the selected spin s j on B
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