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By considering the quantum-mechanically minimum allowable energy interval, we exactly count number 
of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various 
dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete 
ones. Even though substantial fluctuations prevail in discrete DOS, they’re almost completely flattened
out after summation or integration operation. It’s seen that relative errors of analytical expressions of 
bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy 
conditions), while the proposed analytical expressions based on Weyl’s conjecture always preserve their 
lower error characteristic.
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1. Introduction

Density of states (DOS) is a useful concept that is extensively 
used in condensed matter and statistical physics. Although being 
a well-established and widely used concept, validity of conven-
tional DOS is restricted by unbounded continuum approximation. 
Due to the rapid development of nanoscience and nanotechnology 
in recent years, detailed examination of DOS concept which is still 
commonly used in those areas became a necessity [1–7]. Moreover, 
advances in computational power of computers made it possible to 
exactly calculate the summations representing physical quantities, 
which is previously hard to do [7,8].

Essentially, state space is always discrete due to the finite size 
of domains and the wave character of particles. However, discrete-
ness is usually neglected in case of the domain size is much larger 
than the de Broglie wavelength of particles, namely in macroscale. 
This leads to a continuous DOS (CDOS) function that is commonly 
used in literature. On the other hand, in nanoscale, at least one 
of the domain sizes is in the order of the de Broglie wavelength 
of particles and for such confined domains bounded continuum 
approximation represents the state space more properly. In a con-
fined domain, bounded continuum approximation considers the 
non-zero value of ground states of momentum components while 
still neglecting their discrete nature. In this regard, Weyl’s con-
jecture for the asymptotic behavior of eigenvalues uses bounded 
continuum approximation and offers a more precise enumeration 
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of states; thus it gives a more accurate DOS function which may 
be called here Weyl DOS (WDOS).

Both CDOS and WDOS functions are based on continuum ap-
proximation, since they use infinitesimal energy interval assump-
tion. However, quantum-mechanically minimum allowable energy 
interval is finite, and discrete nature of state space becomes signif-
icant when quantum confinement is strong. In this case, exact DOS 
function can only be defined by considering discrete energy eigen-
values. This treatment allows us to define discrete DOS (DDOS) 
function.

Long-standing unsolved “Gauss’ circle problem” (or sphere in 
3D case) that asks an analytical answer for “how many integer lat-
tice points inside of a circle with a given radius” is profoundly 
related to the exact calculation of number of states in state space. 
Even though Gauss’ circle and sphere problems are studied exten-
sively for many years, still there are no exact analytical solutions in 
terms of elementary functions for both problems [9–11]. There are 
some studies related to these problems in literature for calculation 
of lattice sums [11–15]. Only a limited number of studies con-
sider the evaluation of DOS functions for finite-size systems [5–7,9,
16–20]. On the other hand, they use approximations and assump-
tions instead of considering the exact energy interval to define DOS 
function. Also, none of them give an exact and discrete DOS func-
tion for a particle in a box which is one of the most fundamental 
models used in statistical physics.

The aim of this Letter is to introduce a discrete density of states 
function and to compare its results with conventional CDOS as well 
as Weyl’s conjecture-based WDOS function that is proposed here. 
DDOS function is based on the exact enumeration of number of 
states (NOS) for quantum-mechanically allowable discrete energy 

http://dx.doi.org/10.1016/j.physleta.2016.01.034
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.01.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:sismanal@itu.edu.tr
http://dx.doi.org/10.1016/j.physleta.2016.01.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.01.034&domain=pdf


A. Aydin, A. Sisman / Physics Letters A 380 (2016) 1236–1240 1237

levels, instead of using an infinitesimally small energy interval con-
cept. In that sense, DDOS is the generalized form of DOS function 
which reduces to WDOS and CDOS functions in bounded and un-
bounded continuum limits respectively.

2. Generalized forms of DDOS, WDOS and CDOS functions for a 
particle in a box

As it is commonly preferred during the derivation of DOS in 
literature, we consider a non-interacting and non-relativistic mas-
sive particle confined in a D-dimensional rectangular domain. Di-
mensionless translational energy eigenvalues from the solution of 
Schrödinger equation for this kind of system are

ε̃ = ε

kB T
= h2

8mkB T

D∑
n=1

(
in

Ln

)2

=
D∑

n=1

(αnin)
2 (1)

where D is the number of spatial dimensions, kB is Boltzmann’s 
constant, T is temperature, h is Planck’s constant, m is single par-
ticle mass, n denotes orthogonal directions, Ln is length of the 
domain in nth direction and in is quantum state variable running 
from one to infinity. For convenience, we define here a confine-
ment parameter α as αn = h/ 

(√
8mkB T Ln

)
to indicate the mag-

nitude of confinement of the domain in direction n. It should be 
noted that, we use dimensionless energy throughout the deriva-
tions, ε̃ = ε/kB T , instead of energy itself for the simplicity of op-
erations and the compactness of obtained expressions.

Let f be a Lebesgue-integrable function representing the phys-
ical quantity to be calculated. Summation of f over all accessible 
quantum states gives the physical quantity for the system. Apart 
from some exceptional cases, exact results of sums cannot be given 
analytically but only numerically. On the other hand, as long as 
confinement parameters are much smaller than unity, sums can be 
replaced by integrals with a negligible error, and thus analytical 
results can be obtained. Multiple sums turn into multiple integrals 
and CDOS function allows to calculate these multiple integrals over 
quantum state variables by a single integral over energy states,

∞∫
0

· · ·
∞∫

0

f (ε̃i1,···iD )di1 · · ·diD =
∞∫

0

f (ε̃)CDOS(ε̃)dε̃ (2)

where CDOS(ε̃) = d�D/dε̃, d�D is the number of states having en-
ergy values between ε̃ and ε̃ + dε̃ in D-dimensional space and dε̃
is the infinitesimal energy interval.

On the contrary, when the confinement parameters are close to 
or even exceed unity, deviations between the results of integrals 
and sums become important. In this case, multiple summations 
may need to be exactly calculated instead of their integral ap-
proximations and DDOS function allows to calculate multiple sum-
mations by a single summation as long as energy eigenvalues are 
explicitly known. In that case, usage of DDOS function is given as 
follows

∞∑
i1=1

· · ·
∞∑

iD=1

f (ε̃i1,···iD )�i1 · · ·�iD =
∞∑

ε̃=ε̃0
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where ε̃0 = α2
1 + · · · + α2

D is ground state energy and �ε̃ is 
the quantum-mechanically minimum allowable difference between 
successive energy levels, which is not a constant, unlike dε̃. Unfor-
tunately, it is not possible to obtain an analytical expression for �ε̃
except for 1D case. Therefore, it is necessary to generate energy 
spectrum data by using Eq. (1) and apply ascending sorting pro-
cess to this data, then calculate the exact energy intervals between 
successive energy levels numerically. Consequently, DDOS can be 
defined as,

DDOSD(ε̃) = ��D(ε̃)

�ε̃
= �D(ε̃ + �ε̃) − �D(ε̃)

�ε̃
(4)

where �D is discrete number of states (DNOS) given by,

�D(ε̃) = DNOSD(ε̃) =
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where � is left-continuous Heaviside step function, �(0) = 0. It 
is clear that the difference of number of states for two successive 
energy levels (ε̃ and ε̃ + �ε̃) equal to the degeneracy of the en-
ergy level ε̃ since there are no states located in between successive 
energy levels. Note that, we consider spinless particles for brevity 
since spin degree of freedom is just a multiplication constant.

DDOS function predicts some exceptional results than those of 
CDOS function and it gives deeper physical insights which can be 
used in physical interpretations of non-trivial behaviors appeared 
in confined structures. While DDOS function gives an exact de-
scription for DOS function, it requires to know the shape of the 
domain and calculate the energy eigenvalues explicitly. In order to 
obtain an approximate DOS function for an arbitrary-shaped do-
main, the best approximation is to use Weyl’s conjecture derived 
under bounded continuum approximation by neglecting discrete-
ness. Weyl’s conjecture that gives the asymptotic behavior of the 
number of eigenvalues less than k for Helmholtz wave equation 
(which is the stationary form of Schrödinger equation for a parti-
cle in a box) in a D-dimensional finite-size domain is commonly 
written as [3],
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where k is wavenumber, V , S , P and NE are volume, surface, 
periphery and number of edges of the domain respectively. By con-
sidering parabolic dispersion relation between ε and k, we may 
obtain WNOS and WDOS functions respectively from Eq. (6) as,
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where λth = h/
√

2πmkB T is thermal de Broglie wavelength, Heav-
iside step functions are left-continuous and ε̃s represents energy 
eigenvalues of subbands. Subbands are associated with quantized 
modes for confined directions of a domain. Hence, the number of 
confined directions denote the number of subband summations. 
e.g., if the first direction is confined while the other two are free 
(quasi-2D), then ε̃s = (α1i′1)2 and there is one summation over i′1; 
but if the first and second directions are confined and the other 
one is free (quasi-1D), then ε̃s = (α1i′1)2 + (α2i′2)2 and there is a 
double summation over i′1 and i′2.

CNOS and CDOS functions can be recovered from Eqs. (7) and 
(8) by neglecting higher order terms and considering rectangular 
domain geometry as follows,
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