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Population heterogeneity plays an important role across many research, as well as the real-world, 
problems. The population heterogeneity relates to the ability of a population to cope with an environment 
change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can 
be exemplified by an intratumor heterogeneity which positively correlates with the development of 
resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an 
intensively studied topic. In this paper the evolution of a specific strategy of population diversification, 
the phenotype switching, is studied at a conceptual level. The presented simulation model studies 
evolution of a large population of asexual organisms in a time-varying environment represented by a 
stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching 
strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly 
varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the 
deterministic patterns become relevant as the environmental variations are less frequent. Statistical 
characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–
Leibler functional distances and the Hamming distance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The therapeutic experience indicates that intratumor hetero-
geneity is a key to understanding the treatment failure, as an 
extreme diversity of responses of cancer cells to applied therapy 
crucially complicates development of clinically efficient targeted 
therapies [1]. The cell-to-cell phenotypic variability is not bound 
exclusively to differences in the DNA sequences of the respective 
cells but to epigenetic differences as well [2]. The ability of iso-
genic cells to express different phenotypic characteristics, known 
as phenotype plasticity, confers to cellular tissues important prop-
erties such as the ability of cancer cells to escape a targeted ther-
apy by switching into an alternative phenotype [3].

Evidence suggests that transitions between epithelial and mes-
enchymal states, which are the central regulators of cellular plas-
ticity in carcinoma, play important roles in the therapeutic re-
sistance, tumor recurrence and metastatic progression [4]. In [5], 
reversible stochastic state transitions between three different cell 
types (stem, basal, and luminal) in the population of breast cancer 
cells [5] was reported. Moreover, after cultivating single cell-type 
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separately, the original phenotypic composition reestablished by 
generating appropriate number of the respective cell types [5]. As 
the rapidity of reestablishing equilibrium phenotypic proportions 
excludes its explanation by differential growth alone (as it would 
require implausibly high proliferation rate), the stochastic transi-
tions between different cell-types were accepted as a responsible 
mechanism [5].

The fundamental role of phenotypic heterogeneity in cancer 
progression and therapy motivates an effort to stimulate (or pre-
vent) the switch into a specific desirable phenotypic state purpose-
fully as a therapeutic strategy [6,7]. Therefore, molecular mech-
anisms behind the respective phenotype switches are intensively 
studied anticipating their more or less straightforward therapeu-
tic application. On the other hand, a range of studies suggests that 
phenotype heterogeneity results from the evolutionary pressure to 
keep gene expression in tune with physiological needs dictated 
by the tumor microenvironment [8]. It is well accepted that the 
phenotype switching is a general strategy enabling a population 
to maximize its survival probability in fluctuating environments. 
A series of disparate theoretical models of phenotype switching 
was constructed which use different parameterizations on differ-
ent spatial scales [9–14]. An important example for gene network 
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with stochastically induced transitions between multiple pheno-
typic states on the cellular scale has been studied in [15].

In this paper, a causal relation between evolved phenotype 
switching strategy and a time-varying environment is conceived as 
an interaction of the time series corresponding to the environment 
and to the cell states, respectively. The presented conceptual-level 
study avoids biochemical details of underlying molecular mech-
anisms and focuses on universal aspects of the evolution of the 
switching strategy in a time-varying environment. Throughout the 
paper, we refer to cancer biology as a motivation, as well as an 
eventual application field for the obtained results, nevertheless, 
the scope of the approach is much broader. Below proposed dis-
crete lattice models and their construction and application have 
much in common with the models applied in statistical physics. 
At a conceptual level, our work is influenced by the extensive 
class of optimization and computational techniques designed for 
a time-varying environment [16–18], where some of the elements 
of the problem domain which defines the fitness function, typi-
cally the target, changes over time. The time series corresponding 
to a changing environment is represented by the Markov process. 
The phenotypic variation and phenotypic equilibrium can be ex-
plained by different concepts of stabilities in different models [19]. 
To enable evolution of a broad range of possible behaviors, from 
stochastic to deterministic, the time series corresponding to the 
cell state dynamics were selected from the set of models with dif-
ferent properties, focusing on the Markov and nonlinear tent-map 
processes, respectively.

The simulation model of the relation between environmen-
tal exogenous conditions and evolution of a phenotype switching 
strategy is applied to the populations (or colonies) of asexual or-
ganisms – cells of stylized phenotypic structure, each defined by 
the evolutionarily refined parameters within the respective switch-
ing strategy, such as the Markov, tent map, etc., prescribed for the 
whole generation, see below. In the simulation, evolutionary al-
gorithm with the tournament selection [20] was chosen instead of 
biologically less relevant fitness proportional selection. In distinc-
tion to the question of the best solution (in our case the switching 
strategy with its respective refined parameters) posed by optimiza-
tion approaches, our motivation is to extract relevant statistical 
properties of the evolving populations. For that reason, we study 
averaged distance-based measures which evaluate how cells fit 
into environment. In our work, most simulations are carried out 
applying 1D lattice topology for orderings of populations. However, 
to capture the features of more realistic systems, 3D highly amor-
phous lattices with the alternating number of neighbors [21] seem 
to be the most appropriate candidates.

The paper is organized as it follows. Stochastic environment is 
introduced in Section 2. In Section 3 we describe three basic strate-
gies which represent the micro-models in our approach. Particular 
strategies are described in Subsections 3.1, 3.2, and 3.3. The details 
of the one-dimensional population model of evolutionary dynam-
ics are introduced in Section 4. Its two subsections discuss the 
issue of fitness definition (Subsection 4.1), selection and replica-
tion schemes (Subsection 4.2), and the rules that drive mutations 
(Subsection 4.3). The methods that allow us to evaluate simula-
tion outputs and make conclusions are discussed in Section 5. The 
details of the simulation algorithm and simulation results are pre-
sented in Section 6. Finally, the discussion (7) and conclusions are 
presented. Additional statistical results demonstrating universality 
of the approach in dimensions two and three, as well as the results 
for alternative strategies, are presented in Appendix A.

2. Stochastic exogenous environment

Spatio-temporal model of evolutionary trajectories is formu-
lated and studied within a stochastic simulation scheme. In 

the model, environmental dynamics is conceived as a stochastic 
switching between two environmental states, 0 and 1, represented 
by the binary variable h(t) ∈ {0, 1} which follows the formula

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if h(t − 1) = 0
and Wh,01 ≥ uh(t)

0 if h(t − 1) = 1
and Wh,10 ≥ uh(t)

h(t − 1) otherwise

, (1)

where uh(t) is a random number drawn uniformly from (0, 1) in-
terval, Wh,01, Wh,10 are the elements of the stochastic matrix, 
Wh,01 denoting the probability of environment transition from the 
state described by h(t) = 0 to the state corresponding to h(t) = 1
and vice versa. The above formula for the stochastic discrete time 
dynamics of h(t) represents an application of the Monte Carlo (MC) 
acceptance–rejection method. Here, the argument t in uh(t) indi-
cates that random numbers are generated independently for each 
particular t . The above transition probabilities uniquely determine 
the limit probability distribution

Ph=0 = Wh,10

Wh,01 + Wh,10
, Ph=1 = 1 − Ph=0 . (2)

3. Population

Let environment with the above specified dynamics be a plat-
form where the population of N cells – agents evolve. Each cell 
is located at a position in a one dimensional lattice space indi-
cated by the respective position index i ∈ {1, 2, . . . , N}. Each cell is 
in time t in one of the two phenotypic states represented by the 
binary s(i, t) ∈ {0, 1} (see e.g. [22] for the motivation). The above 
elementary topology and the set of possible states are chosen for 
the sake of simplicity and consistency with the set of possible 
states of environment. If not stated otherwise, we hold the con-
vention that it is beneficial for the cell to be in agreement with its 
environment, i.e. when s(i, t) = h(t), which is reflected in the fit-
ness definition, see below. The simplifying assumption made in our 
approach is, that any h(t) is the same for all the sites and there is 
no feedback connecting h(t) with the delayed {s(i)}N

i=1, which is 
consistent with other models [23].

In the paper, we analyze three different strategies (Markov, 
tent-map and mixed) of the phenotype switching, each of them 
framed by the respective set of evolvable parameters (the addi-
tional strategies and their impacts on evolutionary equilibrium can 
be found in Appendix A.2). More formally, the cell at the posi-
tion i in time t is represented by the time-varying phenotype tuple 
C(i, t) of the general structure

C(i, t) ≡ [evolving parameters(i, t); phenotypic state variables(i, t)] ,

where t denotes the generation. The temporal discretization is 
constrained mainly by the need to provide adequate and suffi-
ciently frequent sampling of the cell cycle. Three possible variants 
of C(i, t) corresponding to the three main phenotype switching 
strategies are introduced in the following subsections.

3.1. Markov strategy of switching

Here, the above state variable s(i, t) ∈ {0, 1}, indicating in which 
of the two states the i-th cell currently is, represents a Markov 
binary stochastic variable switching accordingly to the rule
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